crop_layer.c
2.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include "crop_layer.h"
#include "cuda.h"
#include <stdio.h>
image get_crop_image(crop_layer l)
{
int h = l.out_h;
int w = l.out_w;
int c = l.out_c;
return float_to_image(w,h,c,l.output);
}
void backward_crop_layer(const crop_layer l, network net){}
void backward_crop_layer_gpu(const crop_layer l, network net){}
crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
{
fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
crop_layer l = {0};
l.type = CROP;
l.batch = batch;
l.h = h;
l.w = w;
l.c = c;
l.scale = (float)crop_height / h;
l.flip = flip;
l.angle = angle;
l.saturation = saturation;
l.exposure = exposure;
l.out_w = crop_width;
l.out_h = crop_height;
l.out_c = c;
l.inputs = l.w * l.h * l.c;
l.outputs = l.out_w * l.out_h * l.out_c;
l.output = calloc(l.outputs*batch, sizeof(float));
l.forward = forward_crop_layer;
l.backward = backward_crop_layer;
#ifdef GPU
l.forward_gpu = forward_crop_layer_gpu;
l.backward_gpu = backward_crop_layer_gpu;
l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
l.rand_gpu = cuda_make_array(0, l.batch*8);
#endif
return l;
}
void resize_crop_layer(layer *l, int w, int h)
{
l->w = w;
l->h = h;
l->out_w = l->scale*w;
l->out_h = l->scale*h;
l->inputs = l->w * l->h * l->c;
l->outputs = l->out_h * l->out_w * l->out_c;
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
#endif
}
void forward_crop_layer(const crop_layer l, network net)
{
int i,j,c,b,row,col;
int index;
int count = 0;
int flip = (l.flip && rand()%2);
int dh = rand()%(l.h - l.out_h + 1);
int dw = rand()%(l.w - l.out_w + 1);
float scale = 2;
float trans = -1;
if(l.noadjust){
scale = 1;
trans = 0;
}
if(!net.train){
flip = 0;
dh = (l.h - l.out_h)/2;
dw = (l.w - l.out_w)/2;
}
for(b = 0; b < l.batch; ++b){
for(c = 0; c < l.c; ++c){
for(i = 0; i < l.out_h; ++i){
for(j = 0; j < l.out_w; ++j){
if(flip){
col = l.w - dw - j - 1;
}else{
col = j + dw;
}
row = i + dh;
index = col+l.w*(row+l.h*(c + l.c*b));
l.output[count++] = net.input[index]*scale + trans;
}
}
}
}
}