Run.py
6.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from mylib import config, thread
from mylib.mailer import Mailer
from mylib.detection import detect_people
from imutils.video import VideoStream, FPS
from scipy.spatial import distance as dist
import numpy as np
import argparse, imutils, cv2, os, time, schedule
#----------------------------Parse req. arguments------------------------------#
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str, default="",
help="path to (optional) input video file")
ap.add_argument("-o", "--output", type=str, default="",
help="path to (optional) output video file")
ap.add_argument("-d", "--display", type=int, default=1,
help="whether or not output frame should be displayed")
args = vars(ap.parse_args())
#------------------------------------------------------------------------------#
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([config.MODEL_PATH, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.MODEL_PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.MODEL_PATH, "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# check if we are going to use GPU
if config.USE_GPU:
# set CUDA as the preferable backend and target
print("")
print("[INFO] Looking for GPU")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# if a video path was not supplied, grab a reference to the camera
if not args.get("input", False):
print("[INFO] Starting the live stream..")
vs = cv2.VideoCapture(config.url)
if config.Thread:
cap = thread.ThreadingClass(config.url)
time.sleep(2.0)
# otherwise, grab a reference to the video file
else:
print("[INFO] Starting the video..")
vs = cv2.VideoCapture(args["input"])
if config.Thread:
cap = thread.ThreadingClass(args["input"])
writer = None
# start the FPS counter
fps = FPS().start()
# loop over the frames from the video stream
while True:
# read the next frame from the file
if config.Thread:
frame = cap.read()
else:
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end of the stream
if not grabbed:
break
# resize the frame and then detect people (and only people) in it
frame = imutils.resize(frame, width=700)
results = detect_people(frame, net, ln,
personIdx=LABELS.index("person"))
# initialize the set of indexes that violate the max/min social distance limits
serious = set()
abnormal = set()
# ensure there are *at least* two people detections (required in
# order to compute our pairwise distance maps)
if len(results) >= 2:
# extract all centroids from the results and compute the
# Euclidean distances between all pairs of the centroids
centroids = np.array([r[2] for r in results])
D = dist.cdist(centroids, centroids, metric="euclidean")
# loop over the upper triangular of the distance matrix
for i in range(0, D.shape[0]):
for j in range(i + 1, D.shape[1]):
# check to see if the distance between any two
# centroid pairs is less than the configured number of pixels
if D[i, j] < config.MIN_DISTANCE:
# update our violation set with the indexes of the centroid pairs
serious.add(i)
serious.add(j)
# update our abnormal set if the centroid distance is below max distance limit
if (D[i, j] < config.MAX_DISTANCE) and not serious:
abnormal.add(i)
abnormal.add(j)
# loop over the results
for (i, (prob, bbox, centroid)) in enumerate(results):
# extract the bounding box and centroid coordinates, then
# initialize the color of the annotation
(startX, startY, endX, endY) = bbox
(cX, cY) = centroid
color = (0, 255, 0)
# if the index pair exists within the violation/abnormal sets, then update the color
if i in serious:
color = (0, 0, 255)
elif i in abnormal:
color = (0, 255, 255) #orange = (0, 165, 255)
# draw (1) a bounding box around the person and (2) the
# centroid coordinates of the person,
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, cY), 5, color, 2)
# draw some of the parameters
Safe_Distance = "Safe distance: >{} px".format(config.MAX_DISTANCE)
cv2.putText(frame, Safe_Distance, (470, frame.shape[0] - 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.60, (255, 0, 0), 2)
Threshold = "Threshold limit: {}".format(config.Threshold)
cv2.putText(frame, Threshold, (470, frame.shape[0] - 50),
cv2.FONT_HERSHEY_SIMPLEX, 0.60, (255, 0, 0), 2)
# draw the total number of social distancing violations on the output frame
text = "Total serious violations: {}".format(len(serious))
cv2.putText(frame, text, (10, frame.shape[0] - 55),
cv2.FONT_HERSHEY_SIMPLEX, 0.70, (0, 0, 255), 2)
text1 = "Total abnormal violations: {}".format(len(abnormal))
cv2.putText(frame, text1, (10, frame.shape[0] - 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.70, (0, 255, 255), 2)
#------------------------------Alert function----------------------------------#
if len(serious) >= config.Threshold:
cv2.putText(frame, "-ALERT: Violations over limit-", (10, frame.shape[0] - 80),
cv2.FONT_HERSHEY_COMPLEX, 0.60, (0, 0, 255), 2)
if config.ALERT:
print("")
print('[INFO] Sending mail...')
Mailer().send(config.MAIL)
print('[INFO] Mail sent')
#config.ALERT = False
#------------------------------------------------------------------------------#
# check to see if the output frame should be displayed to our screen
if args["display"] > 0:
# show the output frame
cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
fps.update()
# if an output video file path has been supplied and the video
# writer has not been initialized, do so now
if args["output"] != "" and writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 25,
(frame.shape[1], frame.shape[0]), True)
# if the video writer is not None, write the frame to the output video file
if writer is not None:
writer.write(frame)
# stop the timer and display FPS information
fps.stop()
print("===========================")
print("[INFO] Elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))
# close any open windows
cv2.destroyAllWindows()