이현규

Remove warning messages

1 +import logging
2 +import os
1 import numpy as np 3 import numpy as np
2 import tensorflow as tf 4 import tensorflow as tf
3 -from tensorflow import logging
4 from tensorflow import gfile 5 from tensorflow import gfile
5 import operator 6 import operator
6 import src.pb_util as pbutil 7 import src.pb_util as pbutil
7 import src.video_recommender as recommender 8 import src.video_recommender as recommender
8 import src.video_util as videoutil 9 import src.video_util as videoutil
10 +import json
11 +import urllib3
12 +
13 +logging.disable(logging.WARNING)
14 +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
15 +urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
9 16
10 # Old model 17 # Old model
11 MODEL_PATH = "./model/inference_model/segment_inference_model" 18 MODEL_PATH = "./model/inference_model/segment_inference_model"
...@@ -13,12 +20,6 @@ TAG_VECTOR_MODEL_PATH = "./model/tag_vectors.model" ...@@ -13,12 +20,6 @@ TAG_VECTOR_MODEL_PATH = "./model/tag_vectors.model"
13 VIDEO_VECTOR_MODEL_PATH = "./model/video_vectors.model" 20 VIDEO_VECTOR_MODEL_PATH = "./model/video_vectors.model"
14 VIDEO_TAGS_PATH = "./statics/kaggle_solution_40k.csv" 21 VIDEO_TAGS_PATH = "./statics/kaggle_solution_40k.csv"
15 22
16 -# New model
17 -# MODEL_PATH = "./new_model/inference_model/segment_inference_model"
18 -# TAG_VECTOR_MODEL_PATH = "./new_model/tag_vectors.model"
19 -# VIDEO_VECTOR_MODEL_PATH = "./new_model/video_vectors.model"
20 -# VIDEO_TAGS_PATH = "./statics/new_kaggle_solution_40k.csv"
21 -
22 # Define static file paths. 23 # Define static file paths.
23 SEGMENT_LABEL_PATH = "./statics/segment_label_ids.csv" 24 SEGMENT_LABEL_PATH = "./statics/segment_label_ids.csv"
24 VOCAB_PATH = "./statics/vocabulary.csv" 25 VOCAB_PATH = "./statics/vocabulary.csv"
...@@ -27,7 +28,6 @@ VOCAB_PATH = "./statics/vocabulary.csv" ...@@ -27,7 +28,6 @@ VOCAB_PATH = "./statics/vocabulary.csv"
27 TAG_TOP_K = 5 28 TAG_TOP_K = 5
28 VIDEO_TOP_K = 10 29 VIDEO_TOP_K = 10
29 30
30 -
31 def get_segments(batch_video_mtx, batch_num_frames, segment_size): 31 def get_segments(batch_video_mtx, batch_num_frames, segment_size):
32 """Get segment-level inputs from frame-level features.""" 32 """Get segment-level inputs from frame-level features."""
33 video_batch_size = batch_video_mtx.shape[0] 33 video_batch_size = batch_video_mtx.shape[0]
...@@ -95,7 +95,9 @@ def normalize_tag(tag): ...@@ -95,7 +95,9 @@ def normalize_tag(tag):
95 def inference_pb(file_path, threshold): 95 def inference_pb(file_path, threshold):
96 VIDEO_TOP_K = int(threshold) 96 VIDEO_TOP_K = int(threshold)
97 inference_result = {} 97 inference_result = {}
98 - with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: 98 +
99 + graph = tf.Graph()
100 + with tf.Session(graph=graph, config=tf.ConfigProto(allow_soft_placement=True)) as sess:
99 101
100 # 0. Import SequenceExample type target from pb. 102 # 0. Import SequenceExample type target from pb.
101 target_video = pbutil.convert_pb(file_path) 103 target_video = pbutil.convert_pb(file_path)
...@@ -222,10 +224,22 @@ def inference_pb(file_path, threshold): ...@@ -222,10 +224,22 @@ def inference_pb(file_path, threshold):
222 # 6. Dispose instances. 224 # 6. Dispose instances.
223 sess.close() 225 sess.close()
224 226
227 + tf.reset_default_graph()
225 return inference_result 228 return inference_result
226 229
227 230
228 if __name__ == '__main__': 231 if __name__ == '__main__':
229 filepath = "./featuremaps/features.pb" 232 filepath = "./featuremaps/features.pb"
230 result = inference_pb(filepath, 5) 233 result = inference_pb(filepath, 5)
231 - print(result) 234 + print("=============== Old Model ===============")
235 + print(result["tag_result"])
236 + print(json.dumps(result["video_result"], sort_keys=True, indent=2))
237 +
238 + # New model
239 + MODEL_PATH = "./new_model/inference_model/segment_inference_model"
240 + TAG_VECTOR_MODEL_PATH = "./new_model/tag_vectors.model"
241 + VIDEO_VECTOR_MODEL_PATH = "./new_model/video_vectors.model"
242 + VIDEO_TAGS_PATH = "./statics/new_kaggle_solution_40k.csv"
243 + result = inference_pb(filepath, 5)
244 + print("=============== New Model ===============")
245 + print(json.dumps(result, sort_keys=True, indent=2))
......