yolo_model.py
6.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""YOLO v3 output
"""
import numpy as np
import keras.backend as K
from keras.models import load_model
class YOLO:
def __init__(self, obj_threshold, nms_threshold):
"""Init.
# Arguments
obj_threshold: Integer, threshold for object.
nms_threshold: Integer, threshold for box.
"""
self._t1 = obj_threshold
self._t2 = nms_threshold
self._yolo = load_model('data/yolo.h5')
def _sigmoid(self, x):
"""sigmoid.
# Arguments
x: Tensor.
# Returns
numpy ndarray.
"""
return 1 / (1 + np.exp(-x))
def _process_feats(self, out, anchors, mask):
"""process output features.
# Arguments
out: Tensor (N, N, 3, 4 + 1 +80), output feature map of yolo.
anchors: List, anchors for box.
mask: List, mask for anchors.
# Returns
boxes: ndarray (N, N, 3, 4), x,y,w,h for per box.
box_confidence: ndarray (N, N, 3, 1), confidence for per box.
box_class_probs: ndarray (N, N, 3, 80), class probs for per box.
"""
grid_h, grid_w, num_boxes = map(int, out.shape[1: 4])
anchors = [anchors[i] for i in mask]
anchors_tensor = np.array(anchors).reshape(1, 1, len(anchors), 2)
# Reshape to batch, height, width, num_anchors, box_params.
out = out[0]
box_xy = self._sigmoid(out[..., :2])
box_wh = np.exp(out[..., 2:4])
box_wh = box_wh * anchors_tensor
box_confidence = self._sigmoid(out[..., 4])
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = self._sigmoid(out[..., 5:])
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy /= (grid_w, grid_h)
box_wh /= (416, 416)
box_xy -= (box_wh / 2.)
boxes = np.concatenate((box_xy, box_wh), axis=-1)
return boxes, box_confidence, box_class_probs
def _filter_boxes(self, boxes, box_confidences, box_class_probs):
"""Filter boxes with object threshold.
# Arguments
boxes: ndarray, boxes of objects.
box_confidences: ndarray, confidences of objects.
box_class_probs: ndarray, class_probs of objects.
# Returns
boxes: ndarray, filtered boxes.
classes: ndarray, classes for boxes.
scores: ndarray, scores for boxes.
"""
box_scores = box_confidences * box_class_probs
box_classes = np.argmax(box_scores, axis=-1)
box_class_scores = np.max(box_scores, axis=-1)
pos = np.where(box_class_scores >= self._t1)
boxes = boxes[pos]
classes = box_classes[pos]
scores = box_class_scores[pos]
return boxes, classes, scores
def _nms_boxes(self, boxes, scores):
"""Suppress non-maximal boxes.
# Arguments
boxes: ndarray, boxes of objects.
scores: ndarray, scores of objects.
# Returns
keep: ndarray, index of effective boxes.
"""
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2]
h = boxes[:, 3]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 1)
h1 = np.maximum(0.0, yy2 - yy1 + 1)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= self._t2)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def _yolo_out(self, outs, shape):
"""Process output of yolo base net.
# Argument:
outs: output of yolo base net.
shape: shape of original image.
# Returns:
boxes: ndarray, boxes of objects.
classes: ndarray, classes of objects.
scores: ndarray, scores of objects.
"""
masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
boxes, classes, scores = [], [], []
for out, mask in zip(outs, masks):
b, c, s = self._process_feats(out, anchors, mask)
b, c, s = self._filter_boxes(b, c, s)
boxes.append(b)
classes.append(c)
scores.append(s)
boxes = np.concatenate(boxes)
classes = np.concatenate(classes)
scores = np.concatenate(scores)
# Scale boxes back to original image shape.
width, height = shape[1], shape[0]
image_dims = [width, height, width, height]
boxes = boxes * image_dims
nboxes, nclasses, nscores = [], [], []
for c in set(classes):
inds = np.where(classes == c)
b = boxes[inds]
c = classes[inds]
s = scores[inds]
keep = self._nms_boxes(b, s)
nboxes.append(b[keep])
nclasses.append(c[keep])
nscores.append(s[keep])
if not nclasses and not nscores:
return None, None, None
boxes = np.concatenate(nboxes)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)
return boxes, classes, scores
def predict(self, image, shape):
"""Detect the objects with yolo.
# Arguments
image: ndarray, processed input image.
shape: shape of original image.
# Returns
boxes: ndarray, boxes of objects.
classes: ndarray, classes of objects.
scores: ndarray, scores of objects.
"""
outs = self._yolo.predict(image)
boxes, classes, scores = self._yolo_out(outs, shape)
return boxes, classes, scores