adversarial.py
770 Bytes
import torch
import torch.nn as nn
class GANLoss(nn.Module):
def __init__(self, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.loss = nn.MSELoss()
def get_target_tensor(self, input, target_is_real):
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(input)
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real).to(input.device)
return self.loss(input, target_tensor)