MAX30102.c
9.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
///*************************************************************************
// * @file MAX30102.c
// * @brief
// * MAX30102 driver header file
// *
// * @note
// ********************************************************************** **/
/*
Optical Heart Rate Detection (PBA Algorithm)
By: Nathan Seidle
SparkFun Electronics
Date: October 2nd, 2016
Given a series of IR samples from the MAX30105 we discern when a heart beat is occurring
Let's have a brief chat about what this code does. We're going to try to detect
heart-rate optically. This is tricky and prone to give false readings. We really don't
want to get anyone hurt so use this code only as an example of how to process optical
data. Build fun stuff with our MAX30105 breakout board but don't use it for actual
medical diagnosis.
Excellent background on optical heart rate detection:
http://www.ti.com/lit/an/slaa655/slaa655.pdf
Good reading:
http://www.techforfuture.nl/fjc_documents/mitrabaratchi-measuringheartratewithopticalsensor.pdf
https://fruct.org/publications/fruct13/files/Lau.pdf
This is an implementation of Maxim's PBA (Penpheral Beat Amplitude) algorithm. It's been
converted to work within the Arduino framework.
*/
/* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
*/
#include "NuMicro.h"
#include "MAX30102.h"
// Data buffer
uint8_t au8RDataBuf[6];
// Raw HR & SPo2 data from MAX30102 DATA FIFO
volatile int32_t hr_val;
volatile int32_t spo2_val;
extern volatile uint32_t millis_counter;
//extern uint32_t GetMillis();
extern uint32_t OLED_printTime;
int16_t IR_AC_Max = 20;
int16_t IR_AC_Min = -20;
int16_t IR_AC_Signal_Current = 0;
int16_t IR_AC_Signal_Previous;
int16_t IR_AC_Signal_min = 0;
int16_t IR_AC_Signal_max = 0;
int16_t IR_Average_Estimated;
int16_t positiveEdge = 0;
int16_t negativeEdge = 0;
int32_t ir_avg_reg = 0;
int16_t cbuf[32];
uint8_t offset = 0;
static const uint16_t FIRCoeffs[12] = {172, 321, 579, 927, 1360, 1858, 2390, 2916, 3391, 3768, 4012, 4096};
const int32_t RATE_SIZE = 4; //Increase this for more averaging. 4 is good.
int32_t rates[RATE_SIZE]; //Array of heart rates
int32_t rateSpot = 0;
long lastBeat = 0; //Time at which the last beat occurred
float beatsPerMinute;
int beatAvg;
/*
Configuration MAX30102 by write data to a MAX30102 and check return value
*/
void MAX30102_Config()
{
uint8_t ret = 2;
printf("+---------------------------------------------+\n");
printf("| Configuration MAX30102 in SECURE |\n");
printf("+---------------------------------------------+\n");
/* FIFO Config
Sample_AVG 4, FIFO_ROLLOVER_EN
1*/
ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX30102_FIFO_CONFIG, 0x50);
printf("| [1] MAX30102_FIFO_CONFIG ..... |\n");
/* Mode Config
Mode conrtol, Active LED Channels : Multi-LED Mode
*/
ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX30102_MODE_CONFIG, 0x07);
printf("| [2] MAX30102_MODE_CONFIG ..... |\n");
/* SpO2 Config
SPO2 ADC range control(4096), SPO2 sample rate 400/1s,
LED pulse width = 411, ADC Resolution = 18bit
0b00101111
*/
ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX30102_SPO2_CONFIG, 0x2F);
printf("| [3] MAX30102_SPO2_CONFIG ..... |\n");
/* LED Pulse Amplitude
Typical LED1(RED) current : 2.0mA
Typical LED2(IR) current : 6.2mA
*/
ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX30102_LED1_AMP, 0x0A);
printf("| [4] MAX30102_LED1_AMP ..... |\n");
ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX30102_LED2_AMP, 0x1F);
printf("| [5] MAX30102_LED2_AMP ..... |\n");
/* Multi-LED Mode Control Registers
Slot1 : LED1(RED), Slot2 : LED2(IR)
*/
ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX31012_MLED_CTRL1, 0x21);
printf("| [6] MAX31012_MLED_CTRL1 ..... |\n");
//ret = I2C_WriteByteOneReg(I2C0, MAX30102_ADDR, MAX31012_MLED_CTRL2, 0x00);
//printf("| [5]MAX31012_MLED_CTRL2 --- ret %d |\n", ret);
if (ret)
printf("| MAX31012 Configuration Error! |\n");
printf("+---------------------------------------------+\n");
}
// Heart Rate Monitor functions takes a sample value and the sample number
// Returns true if a beat is detected
// A running average of four samples is recommended for display on the screen.
int checkForBeat(int32_t sample)
{
int beatDetected = 0;
// Save current state
IR_AC_Signal_Previous = IR_AC_Signal_Current;
//This is good to view for debugging
//Serial.print("Signal_Current: ");
//Serial.println(IR_AC_Signal_Current);
// Process next data sample
IR_Average_Estimated = averageDCEstimator(&ir_avg_reg, sample);
IR_AC_Signal_Current = lowPassFIRFilter(sample - IR_Average_Estimated);
//printf("\n\t\t\t\t\t\t IR_AC_Signal_Previous(%d), IR_AC_Signal_Current(%d)\n", IR_AC_Signal_Previous , IR_AC_Signal_Current);
// Detect positive zero crossing (rising edge)
if ((IR_AC_Signal_Previous < 0) & (IR_AC_Signal_Current >= 0))
{
IR_AC_Max = IR_AC_Signal_max; //Adjust our AC max and min
IR_AC_Min = IR_AC_Signal_min;
positiveEdge = 1;
negativeEdge = 0;
IR_AC_Signal_max = 0;
//printf("\n\t\t\t\t\t\tIR_AC_Max(%d) - IR_AC_Min(%d) : %d --------------------------------------------------------\n", IR_AC_Max, IR_AC_Max, IR_AC_Min - IR_AC_Min);
//if ((IR_AC_Max - IR_AC_Min) > 20 & (IR_AC_Max - IR_AC_Min) < 1000)
if ((IR_AC_Max - IR_AC_Min) > 20 & (IR_AC_Max - IR_AC_Min) < 1000)
{
//Heart beat!!!
beatDetected = 1;
}
}
// Detect negative zero crossing (falling edge)
if ((IR_AC_Signal_Previous > 0) & (IR_AC_Signal_Current <= 0))
{
positiveEdge = 0;
negativeEdge = 1;
IR_AC_Signal_min = 0;
}
// Find Maximum value in positive cycle
if (positiveEdge & (IR_AC_Signal_Current > IR_AC_Signal_Previous))
{
IR_AC_Signal_max = IR_AC_Signal_Current;
}
// Find Minimum value in negative cycle
if (negativeEdge & (IR_AC_Signal_Current < IR_AC_Signal_Previous))
{
IR_AC_Signal_min = IR_AC_Signal_Current;
}
return(beatDetected);
}
// Average DC Estimator
int16_t averageDCEstimator(int32_t *p, uint16_t x)
{
*p += ((((long) x << 15) - *p) >> 4);
return (*p >> 15);
}
// Low Pass FIR Filter
int16_t lowPassFIRFilter(int16_t din)
{
cbuf[offset] = din;
int32_t z = mul16(FIRCoeffs[11], cbuf[(offset - 11) & 0x1F]);
for (uint8_t i = 0 ; i < 11 ; i++)
{
z += mul16(FIRCoeffs[i], cbuf[(offset - i) & 0x1F] + cbuf[(offset - 22 + i) & 0x1F]);
}
offset++;
offset %= 32; //Wrap condition
return(z >> 15);
}
// Integer multiplier
int32_t mul16(int16_t x, int16_t y)
{
return((long)x * (long)y);
}
/* Get FIFO from MAX30102 */
void MAX30102_GetFIFO()
{
I2C_ReadMultiBytesOneReg(I2C0, MAX30102_ADDR, MAX30102_FIFO_DATA, au8RDataBuf, 6);
hr_val = (au8RDataBuf[0]<<16)|(au8RDataBuf[1]<<8)|au8RDataBuf[2]; //RED LED
spo2_val = (au8RDataBuf[3]<<16)|(au8RDataBuf[4]<<8)|au8RDataBuf[5]; //IR LED(pulse oximetry)
//printf("\n+---------------------------------------------+\n");
//printf("HR_val : %#08x(%d)\t \n", hr_val, hr_val);
//printf("HR_val : %#08x(%d),\t Spo2_val : %#08x(%d) \r\n", hr_val, hr_val, spo2_val, spo2_val);
//printf("+---------------------------------------------+\n");
//CLK_SysTickDelay(300000); //300000us = 300ms = 0.3s
}
uint32_t MAX30102_ComputeBPM()
{
int i;
long irValue;
long delta;
MAX30102_GetFIFO();
irValue = (long)spo2_val;
if (checkForBeat(irValue) == 1)
{
//printf("\nWe sensed a beat!\n");
//printf("\nmillis = %d\t delta = %ld\n", millis_counter, delta);
delta = (millis_counter - lastBeat) - OLED_printTime;
lastBeat = millis_counter;
beatsPerMinute = 60 / (delta / 1000.0);
if (beatsPerMinute < 150 && beatsPerMinute > 20)
{
rates[rateSpot++] = (int)beatsPerMinute; //Store this reading in the array
rateSpot %= RATE_SIZE; //Wrap variable
//Take average of readings
beatAvg = 0;
for (i = 0 ; i < RATE_SIZE ; i++)
beatAvg += rates[i];
beatAvg /= RATE_SIZE;
}
}
printf("\nIR = %ld\t", irValue);
printf("BPM = %f\t", beatsPerMinute);
printf("Avg BPM = %d\t", beatAvg);
if (irValue < 50000)
{
printf("[No Finger]");
return 0;
}
return 1;
}