mobilenet.py 2.04 KB
import torch
import torch.nn as nn
import torch.nn.functional as F

class MobileNet1(nn.Module):
    def __init__(self, inchannel=3, num_classes=10):
        super(MobileNet1, self).__init__()
        self.num_classes = num_classes

        def conv_bn(inp, oup, stride):
            return nn.Sequential(
                nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
                nn.BatchNorm2d(oup),
                nn.Hardswish()
                #nn.Hardsigmoid(inplace=True)
                # nn.LeakyReLU(negative_slope=0.1, inplace=True)
                # nn.ReLU(inplace=True)
            )

        def conv_dw(inp, oup, stride):
            return nn.Sequential(
                nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
                nn.BatchNorm2d(inp),
                nn.Hardswish(),
                #nn.Hardsigmoid(inplace=True),
                # nn.LeakyReLU(negative_slope=0.1, inplace=True),
                # nn.ReLU(inplace=True),
    
                nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
                nn.Hardswish()
                #nn.Hardsigmoid(inplace=True)
                # nn.LeakyReLU(negative_slope=0.1, inplace=True)
                # nn.ReLU(inplace=True),
            )

        self.model = nn.Sequential(
            conv_bn(inchannel, 32, 1), 
            conv_dw( 32,  64, 1),
            conv_dw( 64, 128, 2),
            conv_dw(128, 128, 1),
            conv_dw(128, 256, 2),
            conv_dw(256, 256, 1),
            conv_dw(256, 512, 2),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 1024, 2),
            conv_dw(1024, 1024, 1),
            nn.AdaptiveAvgPool2d(1)
        )
        self.fc = nn.Linear(1024, self.num_classes)


    def forward(self, x):
        x, act_scale = self.model(x)
        # x = self.model(x)
        x = x.view(x.size(0), -1)
        # x = self.fc(x)
        x = self.fc(x, act_scale)
        return x