dla_simple.py
3.99 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''Simplified version of DLA in PyTorch.
Note this implementation is not identical to the original paper version.
But it seems works fine.
See dla.py for the original paper version.
Reference:
Deep Layer Aggregation. https://arxiv.org/abs/1707.06484
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Root(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1):
super(Root, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size,
stride=1, padding=(kernel_size - 1) // 2, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, xs):
x = torch.cat(xs, 1)
out = F.relu(self.bn(self.conv(x)))
return out
class Tree(nn.Module):
def __init__(self, block, in_channels, out_channels, level=1, stride=1):
super(Tree, self).__init__()
self.root = Root(2*out_channels, out_channels)
if level == 1:
self.left_tree = block(in_channels, out_channels, stride=stride)
self.right_tree = block(out_channels, out_channels, stride=1)
else:
self.left_tree = Tree(block, in_channels,
out_channels, level=level-1, stride=stride)
self.right_tree = Tree(block, out_channels,
out_channels, level=level-1, stride=1)
def forward(self, x):
out1 = self.left_tree(x)
out2 = self.right_tree(out1)
out = self.root([out1, out2])
return out
class SimpleDLA(nn.Module):
def __init__(self, block=BasicBlock, num_classes=10):
super(SimpleDLA, self).__init__()
self.base = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(True)
)
self.layer1 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(True)
)
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(True)
)
self.layer3 = Tree(block, 32, 64, level=1, stride=1)
self.layer4 = Tree(block, 64, 128, level=2, stride=2)
self.layer5 = Tree(block, 128, 256, level=2, stride=2)
self.layer6 = Tree(block, 256, 512, level=1, stride=2)
self.linear = nn.Linear(512, num_classes)
def forward(self, x):
out = self.base(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = self.layer6(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def test():
net = SimpleDLA()
print(net)
x = torch.randn(1, 3, 32, 32)
y = net(x)
print(y.size())
if __name__ == '__main__':
test()