model_ori.py
15.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import time,os,sys
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from network import Encoder,Decoder,AD_MODEL,weights_init,print_network
dirname=os.path.dirname
sys.path.insert(0,dirname(dirname(os.path.abspath(__file__))))
from metric import evaluate
##
class Discriminator(nn.Module):
def __init__(self, opt):
super(Discriminator, self).__init__()
model = Encoder(opt.ngpu,opt,1)
layers = list(model.main.children())
self.features = nn.Sequential(*layers[:-1])
self.classifier = nn.Sequential(layers[-1])
self.classifier.add_module('Sigmoid', nn.Sigmoid())
def forward(self, x):
features = self.features(x)
features = features
classifier = self.classifier(features)
classifier = classifier.view(-1, 1).squeeze(1)
return classifier, features
##
class Generator(nn.Module):
def __init__(self, opt):
super(Generator, self).__init__()
self.encoder1 = Encoder(opt.ngpu,opt,opt.nz)
self.decoder = Decoder(opt.ngpu,opt)
def forward(self, x):
latent_i = self.encoder1(x)
gen_x = self.decoder(latent_i)
return gen_x, latent_i
class BeatGAN(AD_MODEL):
def __init__(self, opt, dataloader, device):
super(BeatGAN, self).__init__(opt, dataloader, device)
self.dataloader = dataloader
self.device = device
self.opt=opt
self.batchsize = opt.batchsize
self.nz = opt.nz
self.niter = opt.niter
self.G = Generator( opt).to(device)
self.G.apply(weights_init)
if not self.opt.istest:
print_network(self.G)
self.D = Discriminator(opt).to(device)
self.D.apply(weights_init)
if not self.opt.istest:
print_network(self.D)
self.bce_criterion = nn.BCELoss()
self.mse_criterion=nn.MSELoss()
self.optimizerD = optim.Adam(self.D.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizerG = optim.Adam(self.G.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
self.total_steps = 0
self.cur_epoch=0
self.input = torch.empty(size=(self.opt.batchsize, self.opt.nc, self.opt.isize), dtype=torch.float32, device=self.device)
self.label = torch.empty(size=(self.opt.batchsize,), dtype=torch.float32, device=self.device)
self.gt = torch.empty(size=(opt.batchsize,), dtype=torch.long, device=self.device)
self.fixed_input = torch.empty(size=(self.opt.batchsize, self.opt.nc, self.opt.isize), dtype=torch.float32, device=self.device)
self.real_label = 1
self.fake_label= 0
self.out_d_real = None
self.feat_real = None
self.fake = None
self.latent_i = None
self.out_d_fake = None
self.feat_fake = None
self.err_d_real = None
self.err_d_fake = None
self.err_d = None
self.out_g = None
self.err_g_adv = None
self.err_g_rec = None
self.err_g = None
def train(self):
self.train_hist = {}
self.train_hist['D_loss'] = []
self.train_hist['G_loss'] = []
self.train_hist['per_epoch_time'] = []
self.train_hist['total_time'] = []
print("Train model.")
start_time = time.time()
best_auc=0
best_auc_epoch=0
with open(os.path.join(self.outf, self.model, self.dataset, "val_info.txt"), "w") as f:
for epoch in range(self.niter):
self.cur_epoch+=1
self.train_epoch()
print('check2')
auc,th,f1=self.validate()
if auc > best_auc:
best_auc = auc
best_auc_epoch=self.cur_epoch
self.save_weight_GD()
f.write("[{}] auc:{:.4f} \t best_auc:{:.4f} in epoch[{}]\n".format(self.cur_epoch,auc,best_auc,best_auc_epoch ))
print("[{}] auc:{:.4f} th:{:.4f} f1:{:.4f} \t best_auc:{:.4f} in epoch[{}]\n".format(self.cur_epoch,auc,th,f1,best_auc,best_auc_epoch ))
self.train_hist['total_time'].append(time.time() - start_time)
print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']),
self.niter,
self.train_hist['total_time'][0]))
self.save(self.train_hist)
self.save_loss(self.train_hist)
print('check error point')
def train_epoch(self):
epoch_start_time = time.time()
self.G.train()
self.D.train()
epoch_iter = 0
for data in self.dataloader["train"]:
self.total_steps += self.opt.batchsize
epoch_iter += 1
self.set_input(data)
self.optimize()
errors = self.get_errors()
self.train_hist['D_loss'].append(errors["err_d"])
self.train_hist['G_loss'].append(errors["err_g"])
if (epoch_iter % self.opt.print_freq) == 0:
print("Epoch: [%d] [%4d/%4d] D_loss(R/F): %.6f/%.6f, G_loss: %.6f" %
((self.cur_epoch), (epoch_iter), self.dataloader["train"].dataset.__len__() // self.batchsize,
errors["err_d_real"], errors["err_d_fake"], errors["err_g"]))
# print("err_adv:{} ,err_rec:{} ,err_enc:{}".format(errors["err_g_adv"],errors["err_g_rec"],errors["err_g_enc"]))
self.train_hist['per_epoch_time'].append(time.time() - epoch_start_time)
with torch.no_grad():
real_input,fake_output = self.get_generated_x()
self.visualize_pair_results(self.cur_epoch,
real_input,
fake_output,
is_train=True)
def set_input(self, input):
#self.input.data.resize_(input[0].size()).copy_(input[0])
with torch.no_grad():
self.input.resize_(input[0].size()).copy_(input[0])
#self.gt.data.resize_(input[1].size()).copy_(input[1])
with torch.no_grad():
self.gt.resize_(input[1].size()).copy_(input[1])
# fixed input for view
if self.total_steps == self.opt.batchsize:
#self.fixed_input.data.resize_(input[0].size()).copy_(input[0])
with torch.no_grad():
self.fixed_input.resize_(input[0].size()).copy_(input[0])
##
def optimize(self):
self.update_netd()
self.update_netg()
# If D loss too low, then re-initialize netD
if self.err_d.item() < 5e-6:
self.reinitialize_netd()
def update_netd(self):
##
self.D.zero_grad()
# --
# Train with real
self.label.data.resize_(self.opt.batchsize).fill_(self.real_label)
self.out_d_real, self.feat_real = self.D(self.input)
# --
# Train with fake
self.label.data.resize_(self.opt.batchsize).fill_(self.fake_label)
self.fake, self.latent_i = self.G(self.input)
self.out_d_fake, self.feat_fake = self.D(self.fake)
# --
self.err_d_real = self.bce_criterion(self.out_d_real.type(torch.float), torch.full((self.batchsize,), self.real_label, device=self.device).type(torch.float))
self.err_d_fake = self.bce_criterion(self.out_d_fake.type(torch.float), torch.full((self.batchsize,), self.fake_label, device=self.device).type(torch.float))
self.err_d=self.err_d_real+self.err_d_fake
self.err_d.backward()
self.optimizerD.step()
##
def reinitialize_netd(self):
""" Initialize the weights of netD
"""
self.D.apply(weights_init)
print('Reloading d net')
##
def update_netg(self):
self.G.zero_grad()
self.label.data.resize_(self.opt.batchsize).fill_(self.real_label)
self.fake, self.latent_i = self.G(self.input)
self.out_g, self.feat_fake = self.D(self.fake)
_, self.feat_real = self.D(self.input)
# self.err_g_adv = self.bce_criterion(self.out_g, self.label) # loss for ce
self.err_g_adv=self.mse_criterion(self.feat_fake,self.feat_real) # loss for feature matching
self.err_g_rec = self.mse_criterion(self.fake, self.input) # constrain x' to look like x
self.err_g = self.err_g_rec + self.err_g_adv * self.opt.w_adv
self.err_g.backward()
self.optimizerG.step()
##
def get_errors(self):
errors = {'err_d':self.err_d.item(),
'err_g': self.err_g.item(),
'err_d_real': self.err_d_real.item(),
'err_d_fake': self.err_d_fake.item(),
'err_g_adv': self.err_g_adv.item(),
'err_g_rec': self.err_g_rec.item(),
}
return errors
##
def get_generated_x(self):
fake = self.G(self.fixed_input)[0]
return self.fixed_input.cpu().data.numpy(),fake.cpu().data.numpy()
##
def validate(self):
'''
validate by auc value
:return: auc
'''
y_,y_pred=self.predict(self.dataloader["val"])
rocprc,rocauc,best_th,best_f1=evaluate(y_,y_pred)
return rocauc,best_th,best_f1
def predict(self,dataloader_,scale=True):
with torch.no_grad():
self.an_scores = torch.zeros(size=(len(dataloader_.dataset),), dtype=torch.float32, device=self.device)
self.gt_labels = torch.zeros(size=(len(dataloader_.dataset),), dtype=torch.long, device=self.device)
self.latent_i = torch.zeros(size=(len(dataloader_.dataset), self.opt.nz), dtype=torch.float32, device=self.device)
self.dis_feat = torch.zeros(size=(len(dataloader_.dataset), self.opt.ndf*16*10), dtype=torch.float32,
device=self.device)
for i, data in enumerate(dataloader_, 0):
self.set_input(data)
self.fake, latent_i = self.G(self.input)
# error = torch.mean(torch.pow((d_feat.view(self.input.shape[0],-1)-d_gen_feat.view(self.input.shape[0],-1)), 2), dim=1)
#
error = torch.mean(
torch.pow((self.input.view(self.input.shape[0], -1) - self.fake.view(self.fake.shape[0], -1)), 2),
dim=1)
self.an_scores[i*self.opt.batchsize : i*self.opt.batchsize+error.size(0)] = error.reshape(error.size(0))
self.gt_labels[i*self.opt.batchsize : i*self.opt.batchsize+error.size(0)] = self.gt.reshape(error.size(0))
self.latent_i [i*self.opt.batchsize : i*self.opt.batchsize+error.size(0), :] = latent_i.reshape(error.size(0), self.opt.nz)
# Scale error vector between [0, 1]
if scale:
self.an_scores = (self.an_scores - torch.min(self.an_scores)) / (torch.max(self.an_scores) - torch.min(self.an_scores))
y_=self.gt_labels.cpu().numpy()
y_pred=self.an_scores.cpu().numpy()
return y_,y_pred
def predict_for_right(self,dataloader_,min_score,max_score,threshold,save_dir):
'''
:param dataloader:
:param min_score:
:param max_score:
:param threshold:
:param save_dir:
:return:
'''
assert save_dir is not None
if not os.path.exists(save_dir):
os.makedirs(save_dir)
self.G.eval()
self.D.eval()
with torch.no_grad():
# Create big error tensor for the test set.
test_pair=[]
self.an_scores = torch.zeros(size=(len(dataloader_.dataset),), dtype=torch.float32, device=self.device)
for i, data in enumerate(dataloader_, 0):
self.set_input(data)
self.fake, latent_i = self.G(self.input)
error = torch.mean(
torch.pow((self.input.view(self.input.shape[0], -1) - self.fake.view(self.fake.shape[0], -1)), 2),
dim=1)
self.an_scores[i*self.opt.batchsize : i*self.opt.batchsize+error.size(0)] = error.reshape(error.size(0))
# # Save test images.
batch_input = self.input.cpu().numpy()
batch_output = self.fake.cpu().numpy()
ano_score=error.cpu().numpy()
assert batch_output.shape[0]==batch_input.shape[0]==ano_score.shape[0]
for idx in range(batch_input.shape[0]):
if len(test_pair)>=100:
break
normal_score=(ano_score[idx]-min_score)/(max_score-min_score)
if normal_score>=threshold:
test_pair.append((batch_input[idx],batch_output[idx]))
# print(len(test_pair))
self.saveTestPair(test_pair,save_dir)
def test_type(self):
self.G.eval()
self.D.eval()
res_th=self.opt.threshold
save_dir = os.path.join(self.outf, self.model, self.dataset, "test", str(self.opt.folder))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
y_N, y_pred_N=self.predict(self.dataloader["test_N"],scale=False)
y_S, y_pred_S = self.predict(self.dataloader["test_S"],scale=False)
y_V, y_pred_V = self.predict(self.dataloader["test_V"],scale=False)
y_F, y_pred_F = self.predict(self.dataloader["test_F"],scale=False)
y_Q, y_pred_Q = self.predict(self.dataloader["test_Q"],scale=False)
over_all=np.concatenate([y_pred_N,y_pred_S,y_pred_V,y_pred_F,y_pred_Q])
over_all_gt=np.concatenate([y_N,y_S,y_V,y_F,y_Q])
min_score,max_score=np.min(over_all),np.max(over_all)
A_res={
"S":y_pred_S,
"V":y_pred_V,
"F":y_pred_F,
"Q":y_pred_Q
}
self.analysisRes(y_pred_N,A_res,min_score,max_score,res_th,save_dir)
#save fig for Interpretable
# self.predictForRight(self.dataloader["test_N"], save_dir=os.path.join(save_dir, "N"))
self.predict_for_right(self.dataloader["test_S"], min_score,max_score,res_th,save_dir=os.path.join(save_dir, "S"))
self.predict_for_right(self.dataloader["test_V"], min_score,max_score,res_th,save_dir=os.path.join(save_dir, "V"))
self.predict_for_right(self.dataloader["test_F"], min_score,max_score,res_th,save_dir=os.path.join(save_dir, "F"))
self.predict_for_right(self.dataloader["test_Q"], min_score,max_score,res_th,save_dir=os.path.join(save_dir, "Q"))
aucprc,aucroc,best_th,best_f1=evaluate(over_all_gt,(over_all-min_score)/(max_score-min_score))
print("#############################")
print("######## Result ###########")
print("ap:{}".format(aucprc))
print("auc:{}".format(aucroc))
print("best th:{} --> best f1:{}".format(best_th,best_f1))
with open(os.path.join(save_dir,"res-record.txt"),'w') as f:
f.write("auc_prc:{}\n".format(aucprc))
f.write("auc_roc:{}\n".format(aucroc))
f.write("best th:{} --> best f1:{}".format(best_th, best_f1))
def test_time(self):
self.G.eval()
self.D.eval()
size=self.dataloader["test_N"].dataset.__len__()
start=time.time()
for i, (data_x,data_y) in enumerate(self.dataloader["test_N"], 0):
input_x=data_x
for j in range(input_x.shape[0]):
input_x_=input_x[j].view(1,input_x.shape[1],input_x.shape[2]).to(self.device)
gen_x,_ = self.G(input_x_)
error = torch.mean(
torch.pow((input_x_.view(input_x_.shape[0], -1) - gen_x.view(gen_x.shape[0], -1)), 2),
dim=1)
end=time.time()
print((end-start)/size)