cxr_dataset.py
5.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import pandas as pd
import torch
import numpy as np
from torch.utils.data import Dataset
import os
from PIL import Image
class CXRDataset(Dataset):
def __init__(
self,
path_to_images,
fold,
transform=None,
transform_bb=None,
finding="any",
fine_tune=False,
regression=False,
label_path="/content/gdrive/MyDrive/ColabNotebooks/brixia/labels"):
self.transform = transform
self.transform_bb = transform_bb
self.path_to_images = path_to_images
if not fine_tune:
self.df = pd.read_csv(label_path + "/nih_original_split.csv")
elif fine_tune and not regression:
self.df = pd.read_csv(label_path + "/brixia_split_classification.csv")
else:
self.df = pd.read_csv(label_path + "/brixia_split_regression.csv")
self.fold = fold
self.fine_tune = fine_tune
self.regression = regression
if not fold == 'BBox':
self.df = self.df[self.df['fold'] == fold]
else:
bbox_images_df = pd.read_csv(label_path + "/BBox_List_2017.csv")
self.df = pd.merge(left=self.df, right=bbox_images_df, how="inner", on="Image Index")
if not self.fine_tune:
self.PRED_LABEL = [
'Atelectasis',
'Cardiomegaly',
'Effusion',
'Infiltration',
'Mass',
'Nodule',
'Pneumonia',
'Pneumothorax',
'Consolidation',
'Edema',
'Emphysema',
'Fibrosis',
'Pleural_Thickening',
'Hernia']
else:
self.PRED_LABEL = [
'Detector01',
'Detector2',
'Detector3']
if not finding == "any" and not fine_tune: # can filter for positive findings of the kind described; useful for evaluation
self.df = self.df[self.df['Finding Label'] == finding]
elif not finding == "any" and fine_tune and not regression:
self.df = self.df[self.df[finding] == 1]
self.df = self.df.set_index("Image Index")
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
image = Image.open(
os.path.join(
self.path_to_images,
self.df.index[idx]))
image = image.convert('RGB')
if not self.fine_tune:
label = np.zeros(len(self.PRED_LABEL), dtype=int)
for i in range(0, len(self.PRED_LABEL)):
# can leave zero if zero, else make one
if self.df[self.PRED_LABEL[i].strip()].iloc[idx].astype('int') > 0:
label[i] = self.df[self.PRED_LABEL[i].strip()
].iloc[idx].astype('int')
elif self.fine_tune and not self.regression:
covid_label = np.zeros(len(self.PRED_LABEL), dtype=int)
covid_label[0] = self.df['Detector01'].iloc[idx]
covid_label[1] = self.df['Detector2'].iloc[idx]
covid_label[2] = self.df['Detector3'].iloc[idx]
else:
ground_truth = np.array(self.df['BrixiaScoreGlobal'].iloc[idx].astype('float32'))
if self.transform:
image = self.transform(image)
if self.fold == "BBox":
# exctract bounding box coordinates from dataframe, they exist in the the columns specified below
bounding_box = self.df.iloc[idx, -7:-3].to_numpy()
if self.transform_bb:
transformed_bounding_box = self.transform_bb(bounding_box)
return image, label, self.df.index[idx], transformed_bounding_box
elif self.fine_tune and not self.regression:
return image, covid_label, self.df.index[idx]
elif self.fine_tune and self.regression:
return image, ground_truth, self.df.index[idx]
else:
return image, label, self.df.index[idx]
def pos_neg_balance_weights(self):
pos_neg_weights = []
for i in range(0, len(self.PRED_LABEL)):
num_negatives = self.df[self.df[self.PRED_LABEL[i].strip()] == 0].shape[0]
num_positives = self.df[self.df[self.PRED_LABEL[i].strip()] == 1].shape[0]
pos_neg_weights.append(num_negatives / num_positives)
pos_neg_weights = torch.Tensor(pos_neg_weights)
pos_neg_weights = pos_neg_weights.cuda()
pos_neg_weights = pos_neg_weights.type(torch.cuda.FloatTensor)
return pos_neg_weights
class RescaleBB(object):
"""Rescale the bounding box in a sample to a given size.
Args:
output_image_size (int): Desired output size.
"""
def __init__(self, output_image_size, original_image_size):
assert isinstance(output_image_size, int)
self.output_image_size = output_image_size
self.original_image_size = original_image_size
def __call__(self, sample):
assert sample.shape == (4,)
x, y, w, h = sample[0], sample[1], sample[2], sample[3]
scale_factor = self.output_image_size / self.original_image_size
new_x, new_y, new_w, new_h = x * scale_factor, y * scale_factor, w * scale_factor, h * scale_factor
transformed_sample = np.array([new_x, new_y, new_w, new_h])
return transformed_sample
class BrixiaScoreLocal:
def __init__(self, label_path):
self.data_brixia = pd.read_csv(label_path + "/metadata_global_v2.csv", sep=";")
self.data_brixia.set_index("Filename", inplace=True)
def getScore(self, filename,print_score=False):
score = self.data_brixia.loc[filename.replace(".jpg", ".dcm"), "BrixiaScore"].astype(str)
score = '0' * (6 - len(score)) + score
if print_score:
print('Brixia 6 regions Score: ')
print(score[0], ' | ', score[3])
print(score[1], ' | ', score[4])
print(score[2], ' | ', score[5])
return list(map(int, score))