ArmModel.cs
23.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Modified by Unity from original:
// https://github.com/googlevr/gvr-unity-sdk/blob/master/Assets/GoogleVR/Scripts/Controller/ArmModel/GvrArmModel.cs
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
#if ENABLE_VR || ENABLE_AR
using UnityEngine.SpatialTracking;
using UnityEngine.Experimental.XR.Interaction;
namespace UnityEngine.XR.LegacyInputHelpers
{
public class ArmModel : BasePoseProvider
{
/// <summary> Gets the Pose value from the calculated arm model. as the model returns both position and rotation in all cases, we set both flags on return if successful.</summary>
public override PoseDataFlags GetPoseFromProvider(out Pose output)
{
if (OnControllerInputUpdated())
{
output = finalPose;
return PoseDataFlags.Position | PoseDataFlags.Rotation;
}
output = Pose.identity;
return PoseDataFlags.NoData;
}
Pose m_FinalPose;
/// <summary>
/// the pose which represents the final tracking result of the arm model
/// </summary>
public Pose finalPose
{
get { return m_FinalPose; }
set { m_FinalPose = value; }
}
[SerializeField]
XRNode m_PoseSource = XRNode.LeftHand;
/// <summary>
/// the pose to use as the input 3DOF position
/// </summary>
public XRNode poseSource
{
get { return m_PoseSource; }
set { m_PoseSource = value; }
}
[SerializeField]
XRNode m_HeadPoseSource = XRNode.CenterEye;
/// <summary>
/// The game object which represents the "head" position of the user
/// </summary>
public XRNode headGameObject
{
get { return m_HeadPoseSource; }
set { m_HeadPoseSource = value; }
}
/// Standard implementation for a mathematical model to make the virtual controller approximate the
/// physical location of the Daydream controller.
[SerializeField]
Vector3 m_ElbowRestPosition = DEFAULT_ELBOW_REST_POSITION;
/// <summary>
/// Position of the elbow joint relative to the head before the arm model is applied.
/// </summary>
public Vector3 elbowRestPosition
{
get { return m_ElbowRestPosition; }
set { m_ElbowRestPosition = value; }
}
[SerializeField]
Vector3 m_WristRestPosition = DEFAULT_WRIST_REST_POSITION;
/// <summary>
/// Position of the wrist joint relative to the elbow before the arm model is applied.
/// </summary>
public Vector3 wristRestPosition
{
get { return m_WristRestPosition; }
set { m_WristRestPosition = value; }
}
[SerializeField]
Vector3 m_ControllerRestPosition = DEFAULT_CONTROLLER_REST_POSITION;
/// <summary>
/// Position of the controller joint relative to the wrist before the arm model is applied.
/// </summary>
public Vector3 controllerRestPosition
{
get { return m_ControllerRestPosition; }
set { m_ControllerRestPosition = value; }
}
[SerializeField]
Vector3 m_ArmExtensionOffset = DEFAULT_ARM_EXTENSION_OFFSET;
/// <summary>
/// Offset applied to the elbow position as the controller is rotated upwards.
/// </summary>
public Vector3 armExtensionOffset
{
get { return m_ArmExtensionOffset; }
set { m_ArmExtensionOffset = value; }
}
[Range(0.0f, 1.0f)]
[SerializeField]
float m_ElbowBendRatio = DEFAULT_ELBOW_BEND_RATIO;
/// <summary>
/// Ratio of the controller's rotation to apply to the rotation of the elbow.
/// The remaining rotation is applied to the wrist's rotation.
/// </summary>
public float elbowBendRatio
{
get { return m_ElbowBendRatio; }
set { m_ElbowBendRatio = value; }
}
[SerializeField]
bool m_IsLockedToNeck = true;
/// <summary>
/// If true, the root of the pose is locked to the local position of the player's neck.
/// </summary>
public bool isLockedToNeck
{
get { return m_IsLockedToNeck; }
set { m_IsLockedToNeck = value; }
}
/// Represent the neck's position relative to the user's head.
/// If isLockedToNeck is true, this will be the InputTracking position of the Head node modified
/// by an inverse neck model to approximate the neck position.
/// Otherwise, it is always zero.
public Vector3 neckPosition
{
get
{
return m_NeckPosition;
}
}
/// Represent the shoulder's position relative to the user's head.
/// This is not actually used as part of the arm model calculations, and exists for debugging.
public Vector3 shoulderPosition
{
get
{
Vector3 retVal = m_NeckPosition + m_TorsoRotation * Vector3.Scale(SHOULDER_POSITION, m_HandedMultiplier);
return retVal;
}
}
/// Represent the shoulder's rotation relative to the user's head.
/// This is not actually used as part of the arm model calculations, and exists for debugging.
public Quaternion shoulderRotation
{
get
{
return m_TorsoRotation;
}
}
/// Represent the elbow's position relative to the user's head.
public Vector3 elbowPosition
{
get
{
return m_ElbowPosition;
}
}
/// Represent the elbow's rotation relative to the user's head.
public Quaternion elbowRotation
{
get
{
return m_ElbowRotation;
}
}
/// Represent the wrist's position relative to the user's head.
public Vector3 wristPosition
{
get
{
return m_WristPosition;
}
}
/// Represent the wrist's rotation relative to the user's head.
public Quaternion wristRotation
{
get
{
return m_WristRotation;
}
}
/// Represent the controller's position relative to the head pose
public Vector3 controllerPosition
{
get
{
return m_ControllerPosition;
}
}
/// Represent the controllers rotation relative to the user's head.
public Quaternion controllerRotation
{
get
{
return m_ControllerRotation;
}
}
#if UNITY_EDITOR
/// Editor only API to allow querying the torso forward direction
public Vector3 torsoDirection
{
get { return m_TorsoDirection; }
}
/// Editor only API to allow querying the torso rotation
public Quaternion torsoRotation
{
get { return m_TorsoRotation; }
}
#endif
protected Vector3 m_NeckPosition;
protected Vector3 m_ElbowPosition;
protected Quaternion m_ElbowRotation;
protected Vector3 m_WristPosition;
protected Quaternion m_WristRotation;
protected Vector3 m_ControllerPosition;
protected Quaternion m_ControllerRotation;
/// Multiplier for handedness such that 1 = Right, 0 = Center, -1 = left.
protected Vector3 m_HandedMultiplier;
/// Forward direction of user's torso.
protected Vector3 m_TorsoDirection;
/// Orientation of the user's torso.
protected Quaternion m_TorsoRotation;
// Default values for tuning variables.
protected static readonly Vector3 DEFAULT_ELBOW_REST_POSITION = new Vector3(0.195f, -0.5f, 0.005f);
protected static readonly Vector3 DEFAULT_WRIST_REST_POSITION = new Vector3(0.0f, 0.0f, 0.25f);
protected static readonly Vector3 DEFAULT_CONTROLLER_REST_POSITION = new Vector3(0.0f, 0.0f, 0.05f);
protected static readonly Vector3 DEFAULT_ARM_EXTENSION_OFFSET = new Vector3(-0.13f, 0.14f, 0.08f);
protected const float DEFAULT_ELBOW_BEND_RATIO = 0.6f;
/// Increases elbow bending as the controller moves up (unitless).
protected const float EXTENSION_WEIGHT = 0.4f;
/// Rest position for shoulder joint.
protected static readonly Vector3 SHOULDER_POSITION = new Vector3(0.17f, -0.2f, -0.03f);
/// Neck offset used to apply the inverse neck model when locked to the head.
protected static readonly Vector3 NECK_OFFSET = new Vector3(0.0f, 0.075f, 0.08f);
/// Angle ranges the for arm extension offset to start and end (degrees).
protected const float MIN_EXTENSION_ANGLE = 7.0f;
protected const float MAX_EXTENSION_ANGLE = 60.0f;
protected virtual void OnEnable()
{
// Force the torso direction to match the gaze direction immediately.
// Otherwise, the controller will not be positioned correctly if the ArmModel was enabled
// when the user wasn't facing forward.
UpdateTorsoDirection(true);
// Update immediately to avoid a frame delay before the arm model is applied.
OnControllerInputUpdated();
}
protected virtual void OnDisable()
{
}
public virtual bool OnControllerInputUpdated()
{
UpdateHandedness();
if (UpdateTorsoDirection(false))
{
if (UpdateNeckPosition())
{
if (ApplyArmModel())
{
return true;
}
}
}
return false;
}
protected virtual void UpdateHandedness()
{
// Determine handedness multiplier.
m_HandedMultiplier.Set(0, 1, 1);
if (m_PoseSource == XRNode.RightHand || m_PoseSource == XRNode.TrackingReference)
{
m_HandedMultiplier.x = 1.0f;
}
else if (m_PoseSource == XRNode.LeftHand)
{
m_HandedMultiplier.x = -1.0f;
}
}
protected virtual bool UpdateTorsoDirection(bool forceImmediate)
{
// Determine the gaze direction horizontally.
Vector3 gazeDirection = new Vector3();
if (TryGetForwardVector(m_HeadPoseSource, out gazeDirection))
{
gazeDirection.y = 0.0f;
gazeDirection.Normalize();
// Use the gaze direction to update the forward direction.
if (forceImmediate)
{
m_TorsoDirection = gazeDirection;
}
else
{
Vector3 angAccel;
if (TryGetAngularAcceleration(poseSource, out angAccel))
{
float angularVelocity = angAccel.magnitude;
float gazeFilterStrength = Mathf.Clamp((angularVelocity - 0.2f) / 45.0f, 0.0f, 0.1f);
m_TorsoDirection = Vector3.Slerp(m_TorsoDirection, gazeDirection, gazeFilterStrength);
}
}
// Calculate the torso rotation.
m_TorsoRotation = Quaternion.FromToRotation(Vector3.forward, m_TorsoDirection);
return true;
}
return false;
}
protected virtual bool UpdateNeckPosition()
{
if (m_IsLockedToNeck && TryGetPosition(m_HeadPoseSource, out m_NeckPosition))
{
// Find the approximate neck position by Applying an inverse neck model.
// This transforms the head position to the center of the head and also accounts
// for the head's rotation so that the motion feels more natural.
return ApplyInverseNeckModel(m_NeckPosition, out m_NeckPosition);
}
else
{
m_NeckPosition = Vector3.zero;
return true;
}
}
protected virtual bool ApplyArmModel()
{
// Set the starting positions of the joints before they are transformed by the arm model.
SetUntransformedJointPositions();
// Get the controller's orientation.
Quaternion controllerOrientation;
Quaternion xyRotation;
float xAngle;
if (GetControllerRotation(out controllerOrientation, out xyRotation, out xAngle))
{
// Offset the elbow by the extension offset.
float extensionRatio = CalculateExtensionRatio(xAngle);
ApplyExtensionOffset(extensionRatio);
// Calculate the lerp rotation, which is used to control how much the rotation of the
// controller impacts each joint.
Quaternion lerpRotation = CalculateLerpRotation(xyRotation, extensionRatio);
CalculateFinalJointRotations(controllerOrientation, xyRotation, lerpRotation);
ApplyRotationToJoints();
m_FinalPose.position = m_ControllerPosition;
m_FinalPose.rotation = m_ControllerRotation;
return true;
}
return false;
}
/// Set the starting positions of the joints before they are transformed by the arm model.
protected virtual void SetUntransformedJointPositions()
{
m_ElbowPosition = Vector3.Scale(m_ElbowRestPosition, m_HandedMultiplier);
m_WristPosition = Vector3.Scale(m_WristRestPosition, m_HandedMultiplier);
m_ControllerPosition = Vector3.Scale(m_ControllerRestPosition, m_HandedMultiplier);
}
/// Calculate the extension ratio based on the angle of the controller along the x axis.
protected virtual float CalculateExtensionRatio(float xAngle)
{
float normalizedAngle = (xAngle - MIN_EXTENSION_ANGLE) / (MAX_EXTENSION_ANGLE - MIN_EXTENSION_ANGLE);
float extensionRatio = Mathf.Clamp(normalizedAngle, 0.0f, 1.0f);
return extensionRatio;
}
/// Offset the elbow by the extension offset.
protected virtual void ApplyExtensionOffset(float extensionRatio)
{
Vector3 extensionOffset = Vector3.Scale(m_ArmExtensionOffset, m_HandedMultiplier);
m_ElbowPosition += extensionOffset * extensionRatio;
}
/// Calculate the lerp rotation, which is used to control how much the rotation of the
/// controller impacts each joint.
protected virtual Quaternion CalculateLerpRotation(Quaternion xyRotation, float extensionRatio)
{
float totalAngle = Quaternion.Angle(xyRotation, Quaternion.identity);
float lerpSuppresion = 1.0f - Mathf.Pow(totalAngle / 180.0f, 6.0f);
float inverseElbowBendRatio = 1.0f - m_ElbowBendRatio;
float lerpValue = inverseElbowBendRatio + m_ElbowBendRatio * extensionRatio * EXTENSION_WEIGHT;
lerpValue *= lerpSuppresion;
return Quaternion.Lerp(Quaternion.identity, xyRotation, lerpValue);
}
/// Determine the final joint rotations relative to the head.
protected virtual void CalculateFinalJointRotations(Quaternion controllerOrientation, Quaternion xyRotation, Quaternion lerpRotation)
{
m_ElbowRotation = m_TorsoRotation * Quaternion.Inverse(lerpRotation) * xyRotation;
m_WristRotation = m_ElbowRotation * lerpRotation;
m_ControllerRotation = m_TorsoRotation * controllerOrientation;
}
/// Apply the joint rotations to the positions of the joints to determine the final pose.
protected virtual void ApplyRotationToJoints()
{
m_ElbowPosition = m_NeckPosition + m_TorsoRotation * m_ElbowPosition;
m_WristPosition = m_ElbowPosition + m_ElbowRotation * m_WristPosition;
m_ControllerPosition = m_WristPosition + m_WristRotation * m_ControllerPosition;
}
/// Transform the head position into an approximate neck position.
protected virtual bool ApplyInverseNeckModel(Vector3 headPosition, out Vector3 calculatedPosition)
{
// Determine the gaze direction horizontally.
Quaternion headRotation = new Quaternion();
if (TryGetRotation(m_HeadPoseSource, out headRotation))
{
Vector3 rotatedNeckOffset =
headRotation * NECK_OFFSET - NECK_OFFSET.y * Vector3.up;
headPosition -= rotatedNeckOffset;
calculatedPosition = headPosition;
return true;
}
calculatedPosition = Vector3.zero;
return false;
}
protected bool TryGetForwardVector(XRNode node, out Vector3 forward)
{
Pose tmpPose = new Pose();
if (TryGetRotation(node, out tmpPose.rotation) &&
TryGetPosition(node, out tmpPose.position))
{
forward = tmpPose.forward;
return true;
}
forward = Vector3.zero;
return false;
}
List<XR.XRNodeState> xrNodeStateListOrientation = new List<XRNodeState>();
protected bool TryGetRotation(XRNode node, out Quaternion rotation)
{
XR.InputTracking.GetNodeStates(xrNodeStateListOrientation);
var length = xrNodeStateListOrientation.Count;
XRNodeState nodeState;
for (int i = 0; i < length; ++i)
{
nodeState = xrNodeStateListOrientation[i];
if (nodeState.nodeType == node)
{
if (nodeState.TryGetRotation(out rotation))
{
return true;
}
}
}
rotation = Quaternion.identity;
return false;
}
List<XR.XRNodeState> xrNodeStateListPosition = new List<XRNodeState>();
protected bool TryGetPosition(XRNode node, out Vector3 position)
{
XR.InputTracking.GetNodeStates(xrNodeStateListPosition);
var length = xrNodeStateListPosition.Count;
XRNodeState nodeState;
for (int i = 0; i < length; ++i)
{
nodeState = xrNodeStateListPosition[i];
if (nodeState.nodeType == node)
{
if (nodeState.TryGetPosition(out position))
{
return true;
}
}
}
position = Vector3.zero;
return false;
}
List<XR.XRNodeState> xrNodeStateListAngularAcceleration = new List<XRNodeState>();
protected bool TryGetAngularAcceleration(XRNode node, out Vector3 angularAccel)
{
XR.InputTracking.GetNodeStates(xrNodeStateListAngularAcceleration);
var length = xrNodeStateListAngularAcceleration.Count;
XRNodeState nodeState;
for (int i = 0; i < length; ++i)
{
nodeState = xrNodeStateListAngularAcceleration[i];
if (nodeState.nodeType == node)
{
if (nodeState.TryGetAngularAcceleration(out angularAccel))
{
return true;
}
}
}
angularAccel = Vector3.zero;
return false;
}
List<XR.XRNodeState> xrNodeStateListAngularVelocity = new List<XRNodeState>();
protected bool TryGetAngularVelocity(XRNode node, out Vector3 angVel)
{
XR.InputTracking.GetNodeStates(xrNodeStateListAngularVelocity);
var length = xrNodeStateListAngularVelocity.Count;
XRNodeState nodeState;
for (int i = 0; i < length; ++i)
{
nodeState = xrNodeStateListAngularVelocity[i];
if (nodeState.nodeType == node)
{
if (nodeState.TryGetAngularVelocity(out angVel))
{
return true;
}
}
}
angVel = Vector3.zero;
return false;
}
/// Get the controller's orientation.
protected bool GetControllerRotation(out Quaternion rotation, out Quaternion xyRotation, out float xAngle)
{
// Find the controller's orientation relative to the player.
if (TryGetRotation(poseSource, out rotation))
{
rotation = Quaternion.Inverse(m_TorsoRotation) * rotation;
// Extract just the x rotation angle.
Vector3 controllerForward = rotation * Vector3.forward;
xAngle = 90.0f - Vector3.Angle(controllerForward, Vector3.up);
// Remove the z rotation from the controller.
xyRotation = Quaternion.FromToRotation(Vector3.forward, controllerForward);
return true;
}
else
{
rotation = Quaternion.identity;
xyRotation = Quaternion.identity;
xAngle = 0.0f;
return false;
}
}
#if UNITY_EDITOR
/// <summary>
/// Editor only API to draw debug gizmos to help visualize the arm model
/// </summary>
public virtual void OnDrawGizmos()
{
if (!enabled)
{
return;
}
if (transform.parent == null) {
return;
}
Vector3 worldShoulder = transform.parent.TransformPoint(shoulderPosition);
Vector3 worldElbow = transform.parent.TransformPoint(elbowPosition);
Vector3 worldwrist = transform.parent.TransformPoint(wristPosition);
Vector3 worldcontroller = transform.parent.TransformPoint(controllerPosition);
Gizmos.color = Color.red;
Gizmos.DrawSphere(worldShoulder, 0.02f);
Gizmos.DrawLine(worldShoulder, worldElbow);
Gizmos.color = Color.green;
Gizmos.DrawSphere(worldElbow, 0.02f);
Gizmos.DrawLine(worldElbow, worldwrist);
Gizmos.color = Color.cyan;
Gizmos.DrawSphere(worldwrist, 0.02f);
Gizmos.color = Color.blue;
Gizmos.DrawSphere(worldcontroller, 0.02f);
}
#endif // UNITY_EDITOR
}
}
#endif