gazebo_magnetometer_plugin.cpp
8.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @brief Magnetometer Plugin
*
* This plugin simulates magnetometer data
*
* @author Elia Tarasov <elias.tarasov@gmail.com>
*/
#include <gazebo_magnetometer_plugin.h>
namespace gazebo
{
GZ_REGISTER_MODEL_PLUGIN(MagnetometerPlugin)
MagnetometerPlugin::MagnetometerPlugin() : ModelPlugin(),
groundtruth_lat_rad_(0.0),
groundtruth_lon_rad_(0.0)
{
}
MagnetometerPlugin::~MagnetometerPlugin()
{
update_connection_->~Connection();
}
void MagnetometerPlugin::getSdfParams(sdf::ElementPtr sdf)
{
namespace_.clear();
if (sdf->HasElement("robotNamespace")) {
namespace_ = sdf->GetElement("robotNamespace")->Get<std::string>();
} else {
gzerr << "[gazebo_magnetometer_plugin] Please specify a robotNamespace.\n";
}
if (sdf->HasElement("pubRate")) {
pub_rate_ = sdf->GetElement("pubRate")->Get<unsigned int>();
} else {
pub_rate_ = kDefaultPubRate;
gzwarn << "[gazebo_magnetometer_plugin] Using default publication rate of " << pub_rate_ << " Hz\n";
}
if (sdf->HasElement("noiseDensity")) {
noise_density_ = sdf->GetElement("noiseDensity")->Get<double>();
} else {
noise_density_ = kDefaultNoiseDensity;
gzwarn << "[gazebo_magnetometer_plugin] Using default noise density of " << noise_density_ << " (gauss) / sqrt(hz)\n";
}
if (sdf->HasElement("randomWalk")) {
random_walk_ = sdf->GetElement("randomWalk")->Get<double>();
} else {
random_walk_ = kDefaultRandomWalk;
gzwarn << "[gazebo_magnetometer_plugin] Using default random walk of " << random_walk_ << " (gauss) * sqrt(hz)\n";
}
if (sdf->HasElement("biasCorrelationTime")) {
bias_correlation_time_ = sdf->GetElement("biasCorrelationTime")->Get<double>();
} else {
bias_correlation_time_ = kDefaultBiasCorrelationTime;
gzwarn << "[gazebo_magnetometer_plugin] Using default bias correlation time of " << random_walk_ << " s\n";
}
if(sdf->HasElement("magTopic")) {
mag_topic_ = sdf->GetElement("magTopic")->Get<std::string>();
} else {
mag_topic_ = kDefaultMagnetometerTopic;
gzwarn << "[gazebo_magnetometer_plugin] Using default magnetometer topic " << mag_topic_ << "\n";
}
gt_sub_topic_ = "/groundtruth";
}
void MagnetometerPlugin::Load(physics::ModelPtr model, sdf::ElementPtr sdf)
{
getSdfParams(sdf);
model_ = model;
world_ = model_->GetWorld();
#if GAZEBO_MAJOR_VERSION >= 9
last_time_ = world_->SimTime();
last_pub_time_ = world_->SimTime();
#else
last_time_ = world_->GetSimTime();
last_pub_time_ = world_->GetSimTime();
#endif
node_handle_ = transport::NodePtr(new transport::Node());
node_handle_->Init(namespace_);
// Listen to the update event. This event is broadcast every simulation iteration.
update_connection_ = event::Events::ConnectWorldUpdateBegin(
boost::bind(&MagnetometerPlugin::OnUpdate, this, _1));
pub_mag_ = node_handle_->Advertise<sensor_msgs::msgs::MagneticField>("~/" + model_->GetName() + mag_topic_, 10);
gt_sub_ = node_handle_->Subscribe("~/" + model_->GetName() + gt_sub_topic_, &MagnetometerPlugin::GroundtruthCallback, this);
standard_normal_distribution_ = std::normal_distribution<double>(0.0, 1.0);
bias_.setZero();
for (auto i = 0; i < 9; ++i) {
switch (i){
// principal diagonal = the variance of the random variables
// = noise_density²
case 0: case 4: case 8:
mag_message_.add_magnetic_field_covariance(noise_density_ * noise_density_);
break;
default:
mag_message_.add_magnetic_field_covariance(0.0);
}
}
}
void MagnetometerPlugin::GroundtruthCallback(GtPtr& gt_msg) {
// update groundtruth lat_rad, lon_rad and altitude
groundtruth_lat_rad_ = gt_msg->latitude_rad();
groundtruth_lon_rad_ = gt_msg->longitude_rad();
}
void MagnetometerPlugin::addNoise(Eigen::Vector3d* magnetic_field, const double dt) {
assert(dt > 0.0);
double tau = bias_correlation_time_;
// Discrete-time standard deviation equivalent to an "integrating" sampler
// with integration time dt.
double sigma_d = 1 / sqrt(dt) * noise_density_;
double sigma_b = random_walk_;
// Compute exact covariance of the process after dt [Maybeck 4-114].
double sigma_b_d = sqrt( - sigma_b * sigma_b * tau / 2.0 * (exp(-2.0 * dt / tau) - 1.0));
// Compute state-transition.
double phi_d = exp(-1.0 / tau * dt);
// Simulate magnetometer noise processes and add them to the true signal.
for (int i = 0; i < 3; ++i) {
bias_[i] = phi_d * bias_[i] + sigma_b_d * standard_normal_distribution_(random_generator_);
(*magnetic_field)[i] = (*magnetic_field)[i] + bias_[i] + sigma_d * standard_normal_distribution_(random_generator_);
}
}
void MagnetometerPlugin::OnUpdate(const common::UpdateInfo&)
{
#if GAZEBO_MAJOR_VERSION >= 9
common::Time current_time = world_->SimTime();
#else
common::Time current_time = world_->GetSimTime();
#endif
double dt = (current_time - last_pub_time_).Double();
if (dt > 1.0 / pub_rate_) {
// Magnetic field data from WMM2018 (10^5xnanoTesla (N, E D) n-frame )
// Magnetic declination and inclination (radians)
float declination_rad = get_mag_declination(groundtruth_lat_rad_ * 180 / M_PI, groundtruth_lon_rad_ * 180 / M_PI) * M_PI / 180;
float inclination_rad = get_mag_inclination(groundtruth_lat_rad_ * 180 / M_PI, groundtruth_lon_rad_ * 180 / M_PI) * M_PI / 180;
// Magnetic strength (10^5xnanoTesla)
float strength_ga = 0.01f * get_mag_strength(groundtruth_lat_rad_ * 180 / M_PI, groundtruth_lon_rad_ * 180 / M_PI);
// Magnetic filed components are calculated by http://geomag.nrcan.gc.ca/mag_fld/comp-en.php
float H = strength_ga * cosf(inclination_rad);
float Z = tanf(inclination_rad) * H;
float X = H * cosf(declination_rad);
float Y = H * sinf(declination_rad);
ignition::math::Vector3d magnetic_field_I(X, Y, Z);
#if GAZEBO_MAJOR_VERSION >= 9
ignition::math::Pose3d T_W_I = model_->WorldPose();
#else
ignition::math::Pose3d T_W_I = ignitionFromGazeboMath(model_->GetWorldPose());
#endif
ignition::math::Quaterniond q_body_to_world = q_ENU_to_NED * T_W_I.Rot() * q_FLU_to_FRD.Inverse();
ignition::math::Vector3d magnetic_field_B = q_body_to_world.RotateVectorReverse(magnetic_field_I);
// Magnetometer noise
Eigen::Vector3d measured_mag(magnetic_field_B.X(), magnetic_field_B.Y(), magnetic_field_B.Z());
addNoise(&measured_mag, dt);
// Fill magnetometer messgae
mag_message_.set_time_usec(current_time.Double() * 1e6);
gazebo::msgs::Vector3d* magnetic_field = new gazebo::msgs::Vector3d();
magnetic_field->set_x(measured_mag[0]);
magnetic_field->set_y(measured_mag[1]);
magnetic_field->set_z(measured_mag[2]);
mag_message_.set_allocated_magnetic_field(magnetic_field);
last_pub_time_ = current_time;
// publish mag msg
pub_mag_->Publish(mag_message_);
}
}
}