batch_process_metadata_ekf.py
31 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import numpy as np
import matplotlib.pyplot as plt
"""
Performs a composite analysis of ekf log analysis meta data for all .ulg.csv files in the specified directory
Generates and saves histogram plots for the meta data in population_data.pdf
Generates and saves population summary data in population_data.csv
"""
parser = argparse.ArgumentParser(description='Perform a composite analysis of ekf log analysis meta data for all .ulg.csv files in the specified directory')
parser.add_argument("directory_path")
def is_valid_directory(parser, arg):
if os.path.isdir(arg):
# Directory exists so return the directory
return arg
else:
parser.error('The directory {} does not exist'.format(arg))
args = parser.parse_args()
metadata_directory = args.directory_path
# Run the metadata analsyis tool to generate population statistics
# Loop through the csv files in the directory and load the metadata into a nested dictionary
print("\n"+"analysing all .ulog.csv files in "+metadata_directory)
population_data = {}
for filename in os.listdir(metadata_directory):
if filename.endswith(".mdat.csv"):
print("loading "+filename)
# get the dictionary of fail and warning test thresholds from a csv file
file = open(metadata_directory+"/"+filename)
single_log_data = { } # meta data dictionary for a single log
for line in file:
x = line.split(",")
a=x[0]
b=x[1]
c=x[2]
try:
single_log_data[a]=float(b)
except:
single_log_data[a]=b
file.close()
population_data[filename]=single_log_data
# # print out the check levels
# print('\n'+'The following metadata loaded from '+filename+' were used'+'\n')
# val = population_data.get(filename, {}).get('imu_hfdang_mean')
# print(val)
# Open pdf file for plotting
from matplotlib.backends.backend_pdf import PdfPages
output_plot_filename = "population_data.pdf"
pp = PdfPages(metadata_directory+"/"+output_plot_filename)
# get statistics for the population
population_results = {
'master_warning_pct':[float('NaN'),'Percentage of logs with warnings'],
'master_fail_pct':[float('NaN'),'Percentage of logs with fails'],
'mag_warning_pct':[float('NaN'),'Percentage of logs with magnetometer sensor warnings'],
'mag_fail_pct':[float('NaN'),'Percentage of logs with magnetometer sensor fails'],
'yaw_warning_pct':[float('NaN'),'Percentage of logs with yaw sensor warnings'],
'yaw_fail_pct':[float('NaN'),'Percentage of logs with yaw sensor fails'],
'vel_warning_pct':[float('NaN'),'Percentage of logs with velocity sensor warnings'],
'vel_fail_pct':[float('NaN'),'Percentage of logs with velocity sensor fails'],
'pos_warning_pct':[float('NaN'),'Percentage of logs with position sensor warnings'],
'pos_fail_pct':[float('NaN'),'Percentage of logs with position sensor fails'],
'hgt_warning_pct':[float('NaN'),'Percentage of logs with height sensor warnings'],
'hgt_fail_pct':[float('NaN'),'Percentage of logs with height sensor fails'],
'hagl_warning_pct':[float('NaN'),'Percentage of logs with height above ground sensor warnings'],
'hagl_fail_pct':[float('NaN'),'Percentage of logs with height above ground sensor fails'],
'tas_warning_pct':[float('NaN'),'Percentage of logs with airspeed sensor warnings'],
'tas_fail_pct':[float('NaN'),'Percentage of logs with airspeed ground sensor fails'],
'mag_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the magnetic field sensor innovation consistency test ratio'],
'mag_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the magnetic field sensor innovation consistency test ratio'],
'vel_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the velocity sensor innovation consistency test ratio'],
'vel_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the velocity sensor innovation consistency test ratio'],
'pos_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the position sensor innovation consistency test ratio'],
'pos_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the position sensor innovation consistency test ratio'],
'hgt_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the height sensor innovation consistency test ratio'],
'hgt_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the height sensor innovation consistency test ratio'],
'tas_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the airspeed sensor innovation consistency test ratio'],
'tas_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the airspeed sensor innovation consistency test ratio'],
'hagl_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the height above ground sensor innovation consistency test ratio'],
'hagl_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the height above ground sensor innovation consistency test ratio'],
'ofx_fail_pct_avg':[float('NaN'),'The mean percentage of innovation test fails for the X axis optical flow sensor'],
'ofy_fail_pct_avg':[float('NaN'),'The mean percentage of innovation test fails for the Y axis optical flow sensor'],
'imu_coning_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU delta angle coning vibration level (mrad)'],
'imu_coning_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta angle coning vibration level (mrad)'],
'imu_hfdang_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta angle vibration level (mrad)'],
'imu_hfdang_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta angle vibration level (mrad)'],
'imu_hfdvel_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta velocity vibration level (m/s)'],
'imu_hfdvel_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta velocity vibration level (m/s)'],
'obs_ang_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer angular tracking error magnitude (mrad)'],
'obs_vel_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer velocity tracking error magnitude (m/s)'],
'obs_pos_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer position tracking error magnitude (m)'],
}
# get population summary statistics
found_keys = population_data.keys()
# master status
result = [population_data[k].get('master_status') for k in found_keys]
population_results['master_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['master_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# magnetometer sensor
result = [population_data[k].get('mag_sensor_status') for k in found_keys]
population_results['mag_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['mag_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# yaw sensor
result = [population_data[k].get('yaw_sensor_status') for k in found_keys]
population_results['yaw_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['yaw_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# velocity sensor
result = [population_data[k].get('vel_sensor_status') for k in found_keys]
population_results['vel_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['vel_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# position sensor
result = [population_data[k].get('pos_sensor_status') for k in found_keys]
population_results['pos_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['pos_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# height sensor
result = [population_data[k].get('hgt_sensor_status') for k in found_keys]
population_results['hgt_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['hgt_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# height above ground sensor
result = [population_data[k].get('hagl_sensor_status') for k in found_keys]
population_results['hagl_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['hagl_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# height above ground sensor
result = [population_data[k].get('tas_sensor_status') for k in found_keys]
population_results['tas_warning_pct'][0] = 100.0 * result.count('Warning') / len(result)
population_results['tas_fail_pct'][0] = 100.0 * result.count('Fail') / len(result)
# Mean and max innovation test levels
# Magnetometer
temp = np.asarray([population_data[k].get('mag_test_max') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('mag_test_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['mag_test_max_avg'][0] = np.mean(result1)
population_results['mag_test_mean_avg'][0] = np.mean(result2)
plt.figure(1,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Magnetometer Innovation Test Ratio Maximum")
plt.xlabel("mag_test_max")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Magnetometer Innovation Test Ratio Mean")
plt.xlabel("mag_test_mean")
plt.ylabel("Frequency")
pp.savefig()
plt.close(1)
# Velocity Sensor (GPS)
temp = np.asarray([population_data[k].get('vel_test_max') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('vel_test_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['vel_test_max_avg'][0] = np.mean(result1)
population_results['vel_test_mean_avg'][0] = np.mean(result2)
plt.figure(2,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Velocity Innovation Test Ratio Maximum")
plt.xlabel("vel_test_max")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Velocity Innovation Test Ratio Mean")
plt.xlabel("vel_test_mean")
plt.ylabel("Frequency")
pp.savefig()
plt.close(2)
# Position Sensor (GPS or external vision)
temp = np.asarray([population_data[k].get('pos_test_max') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('pos_test_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['pos_test_max_avg'][0] = np.mean(result1)
population_results['pos_test_mean_avg'][0] = np.mean(result2)
plt.figure(3,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Position Innovation Test Ratio Maximum")
plt.xlabel("pos_test_max")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Position Innovation Test Ratio Mean")
plt.xlabel("pos_test_mean")
plt.ylabel("Frequency")
pp.savefig()
plt.close(3)
# Height Sensor
temp = np.asarray([population_data[k].get('hgt_test_max') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('hgt_test_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['hgt_test_max_avg'][0] = np.mean(result1)
population_results['hgt_test_mean_avg'][0] = np.mean(result2)
plt.figure(4,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Height Innovation Test Ratio Maximum")
plt.xlabel("pos_test_max")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Height Innovation Test Ratio Mean")
plt.xlabel("pos_test_mean")
plt.ylabel("Frequency")
pp.savefig()
plt.close(4)
# Airspeed Sensor
temp = np.asarray([population_data[k].get('tas_test_max') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('tas_test_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['tas_test_max_avg'][0] = np.mean(result1)
population_results['tas_test_mean_avg'][0] = np.mean(result2)
plt.figure(5,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Airspeed Innovation Test Ratio Maximum")
plt.xlabel("tas_test_max")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Airspeed Innovation Test Ratio Mean")
plt.xlabel("tas_test_mean")
plt.ylabel("Frequency")
pp.savefig()
plt.close(5)
# Height Above Ground Sensor
temp = np.asarray([population_data[k].get('hagl_test_max') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('hagl_test_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['hagl_test_max_avg'][0] = np.mean(result1)
population_results['hagl_test_mean_avg'][0] = np.mean(result2)
plt.figure(6,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - HAGL Innovation Test Ratio Maximum")
plt.xlabel("hagl_test_max")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - HAGL Innovation Test Ratio Mean")
plt.xlabel("hagl_test_mean")
plt.ylabel("Frequency")
pp.savefig()
plt.close(6)
# Optical Flow Sensor
temp = np.asarray([population_data[k].get('ofx_fail_percentage') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('ofy_fail_percentage') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['ofx_fail_pct_avg'][0] = np.mean(result1)
population_results['ofy_fail_pct_avg'][0] = np.mean(result2)
plt.figure(7,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Optical Flow X Axis Fail Percentage")
plt.xlabel("ofx_fail_percentage")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Optical Flow Y Axis Fail Percentage")
plt.xlabel("ofy_fail_percentage")
plt.ylabel("Frequency")
pp.savefig()
plt.close(7)
# IMU coning vibration levels
temp = np.asarray([population_data[k].get('imu_coning_peak') for k in found_keys])
result1 = 1000.0 * temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('imu_coning_mean') for k in found_keys])
result2 = 1000.0 * temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['imu_coning_max_avg'][0] = np.mean(result1)
population_results['imu_coning_mean_avg'][0] = np.mean(result2)
plt.figure(8,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - IMU Coning Vibration Peak")
plt.xlabel("imu_coning_max (mrad)")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - IMU Coning Vibration Mean")
plt.xlabel("imu_coning_mean (mrad)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(8)
# IMU high frequency delta angle vibration levels
temp = np.asarray([population_data[k].get('imu_hfdang_peak') for k in found_keys])
result1 = 1000.0 * temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('imu_hfdang_mean') for k in found_keys])
result2 = 1000.0 * temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['imu_hfdang_max_avg'][0] = np.mean(result1)
population_results['imu_hfdang_mean_avg'][0] = np.mean(result2)
plt.figure(9,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - IMU HF Delta Angle Vibration Peak")
plt.xlabel("imu_hfdang_max (mrad)")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - IMU HF Delta Angle Vibration Mean")
plt.xlabel("imu_hfdang_mean (mrad)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(9)
# IMU high frequency delta velocity vibration levels
temp = np.asarray([population_data[k].get('imu_hfdvel_peak') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('imu_hfdvel_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['imu_hfdvel_max_avg'][0] = np.mean(result1)
population_results['imu_hfdvel_mean_avg'][0] = np.mean(result2)
plt.figure(10,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - IMU HF Delta Velocity Vibration Peak")
plt.xlabel("imu_hfdvel_max (m/s)")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - IMU HF Delta Velocity Vibration Mean")
plt.xlabel("imu_hfdvel_mean (m/s)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(10)
# Output Observer Angular Tracking
temp = np.asarray([population_data[k].get('output_obs_ang_err_median') for k in found_keys])
result = 1000.0 * temp[np.isfinite(temp)]
if (len(result) > 0):
population_results['obs_ang_median_avg'][0] = np.mean(result)
plt.figure(11,figsize=(20,13))
plt.hist(result)
plt.title("Gaussian Histogram - Output Observer Angular Tracking Error Median")
plt.xlabel("output_obs_ang_err_median (mrad)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(11)
# Output Observer Velocity Tracking
temp = np.asarray([population_data[k].get('output_obs_vel_err_median') for k in found_keys])
result = temp[np.isfinite(temp)]
if (len(result) > 0):
population_results['obs_vel_median_avg'][0] = np.mean(result)
plt.figure(12,figsize=(20,13))
plt.hist(result)
plt.title("Gaussian Histogram - Output Observer Velocity Tracking Error Median")
plt.xlabel("output_obs_ang_err_median (m/s)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(12)
# Output Observer Position Tracking
temp = np.asarray([population_data[k].get('output_obs_pos_err_median') for k in found_keys])
result = temp[np.isfinite(temp)]
if (len(result) > 0):
population_results['obs_pos_median_avg'][0] = np.mean(result)
plt.figure(13,figsize=(20,13))
plt.hist(result)
plt.title("Gaussian Histogram - Output Observer Position Tracking Error Median")
plt.xlabel("output_obs_ang_err_median (m)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(13)
# IMU delta angle bias
temp = np.asarray([population_data[k].get('imu_dang_bias_median') for k in found_keys])
result = temp[np.isfinite(temp)]
if (len(result) > 0):
plt.figure(14,figsize=(20,13))
plt.hist(result)
plt.title("Gaussian Histogram - IMU Delta Angle Bias Median")
plt.xlabel("imu_dang_bias_median (rad)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(14)
# IMU delta velocity bias
temp = np.asarray([population_data[k].get('imu_dvel_bias_median') for k in found_keys])
result = temp[np.isfinite(temp)]
if (len(result) > 0):
plt.figure(15,figsize=(20,13))
plt.hist(result)
plt.title("Gaussian Histogram - IMU Delta Velocity Bias Median")
plt.xlabel("imu_dvel_bias_median (m/s)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(15)
# close the pdf file
pp.close()
print('Population summary plots saved in population_data.pdf')
# don't display to screen
#plt.show()
# clase all figures
plt.close("all")
# write metadata to a .csv file
population_results_filename = metadata_directory + "/population_data.csv"
file = open(population_results_filename,"w")
file.write("name,value,description\n")
# loop through the dictionary and write each entry on a separate row, with data comma separated
# save data in alphabetical order
key_list = list(population_results.keys())
key_list.sort()
for key in key_list:
file.write(key+","+str(population_results[key][0])+","+population_results[key][1]+"\n")
file.close()
print('Population summary data saved in population_data.csv')
single_log_results = {
'filter_faults_max':[float('NaN'),'Largest recorded value of the filter internal fault bitmask. Should always be zero.'],
'hagl_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'],
'hagl_percentage_amber':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'],
'hagl_percentage_red':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'],
'hagl_sensor_status':['Pass','Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'hagl_test_max':[float('NaN'),'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'],
'hagl_test_mean':[float('NaN'),'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'],
'hgt_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'],
'hgt_percentage_amber':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 0.5.'],
'hgt_percentage_red':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 1.0.'],
'hgt_sensor_status':['Pass','Height sensor check summary. This sensor data can be sourced from either Baro, GPS, range fidner or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'hgt_test_max':[float('NaN'),'The maximum in-flight value of the height sensor innovation consistency test ratio.'],
'hgt_test_mean':[float('NaN'),'The mean in-flight value of the height sensor innovation consistency test ratio.'],
'imu_coning_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'],
'imu_coning_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'],
'imu_hfdang_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
'imu_hfdang_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
'imu_hfdvel_mean':[float('NaN'),'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
'imu_hfdvel_peak':[float('NaN'),'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
'imu_sensor_status':['Pass','IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'in_air_transition_time':[float('NaN'),'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'],
'mag_percentage_amber':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'],
'mag_percentage_red':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'],
'mag_sensor_status':['Pass','Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'mag_test_max':[float('NaN'),'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'],
'mag_test_mean':[float('NaN'),'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'],
'magx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'],
'magy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'],
'magz_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'],
'master_status':['Pass','Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'ofx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'],
'ofy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'],
'on_ground_transition_time':[float('NaN'),'The time in seconds measured from startup that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'],
'output_obs_ang_err_median':[float('NaN'),'Median in-flight value of the output observer angular error (rad)'],
'output_obs_pos_err_median':[float('NaN'),'Median in-flight value of the output observer position error (m)'],
'output_obs_vel_err_median':[float('NaN'),'Median in-flight value of the output observer velocity error (m/s)'],
'pos_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'],
'pos_percentage_amber':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'],
'pos_percentage_red':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'],
'pos_sensor_status':['Pass','Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'pos_test_max':[float('NaN'),'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'],
'pos_test_mean':[float('NaN'),'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'],
'tas_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'],
'tas_percentage_amber':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'],
'tas_percentage_red':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'],
'tas_sensor_status':['Pass','Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'tas_test_max':[float('NaN'),'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'],
'tas_test_mean':[float('NaN'),'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'],
'tilt_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'],
'vel_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'],
'vel_percentage_amber':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'],
'vel_percentage_red':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'],
'vel_sensor_status':['Pass','Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
'vel_test_max':[float('NaN'),'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'],
'vel_test_mean':[float('NaN'),'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'],
'yaw_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the yaw alignment.'],
'yaw_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'],
'yaw_sensor_status':['Pass','Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
}