sensors.cpp
21.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/****************************************************************************
*
* Copyright (c) 2012-2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file sensors.cpp
*
* @author Lorenz Meier <lorenz@px4.io>
* @author Julian Oes <julian@oes.ch>
* @author Thomas Gubler <thomas@px4.io>
* @author Anton Babushkin <anton@px4.io>
* @author Beat Küng <beat-kueng@gmx.net>
*/
#include <drivers/drv_adc.h>
#include <drivers/drv_airspeed.h>
#include <drivers/drv_hrt.h>
#include <lib/airspeed/airspeed.h>
#include <lib/mathlib/mathlib.h>
#include <lib/parameters/param.h>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/module.h>
#include <px4_platform_common/module_params.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/px4_config.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>
#include <px4_platform_common/tasks.h>
#include <px4_platform_common/time.h>
#include <uORB/Publication.hpp>
#include <uORB/PublicationMulti.hpp>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionCallback.hpp>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/airspeed.h>
#include <uORB/topics/differential_pressure.h>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/sensors_status_imu.h>
#include <uORB/topics/vehicle_air_data.h>
#include <uORB/topics/vehicle_control_mode.h>
#include <uORB/topics/vehicle_imu.h>
#include "voted_sensors_update.h"
#include "vehicle_acceleration/VehicleAcceleration.hpp"
#include "vehicle_angular_velocity/VehicleAngularVelocity.hpp"
#include "vehicle_air_data/VehicleAirData.hpp"
#include "vehicle_gps_position/VehicleGPSPosition.hpp"
#include "vehicle_imu/VehicleIMU.hpp"
#include "vehicle_magnetometer/VehicleMagnetometer.hpp"
using namespace sensors;
using namespace time_literals;
/**
* HACK - true temperature is much less than indicated temperature in baro,
* subtract 5 degrees in an attempt to account for the electrical upheating of the PCB
*/
#define PCB_TEMP_ESTIMATE_DEG 5.0f
class Sensors : public ModuleBase<Sensors>, public ModuleParams, public px4::ScheduledWorkItem
{
public:
explicit Sensors(bool hil_enabled);
~Sensors() override;
/** @see ModuleBase */
static int task_spawn(int argc, char *argv[]);
/** @see ModuleBase */
static int custom_command(int argc, char *argv[]);
/** @see ModuleBase */
static int print_usage(const char *reason = nullptr);
/** @see ModuleBase::run() */
void Run() override;
/** @see ModuleBase::print_status() */
int print_status() override;
bool init();
private:
const bool _hil_enabled; /**< if true, HIL is active */
bool _armed{false}; /**< arming status of the vehicle */
hrt_abstime _last_config_update{0};
hrt_abstime _sensor_combined_prev_timestamp{0};
sensor_combined_s _sensor_combined{};
uORB::SubscriptionCallbackWorkItem _vehicle_imu_sub[MAX_SENSOR_COUNT] {
{this, ORB_ID(vehicle_imu), 0},
{this, ORB_ID(vehicle_imu), 1},
{this, ORB_ID(vehicle_imu), 2},
{this, ORB_ID(vehicle_imu), 3}
};
uORB::SubscriptionInterval _parameter_update_sub{ORB_ID(parameter_update), 1_s};
uORB::Subscription _diff_pres_sub{ORB_ID(differential_pressure)};
uORB::Subscription _vcontrol_mode_sub{ORB_ID(vehicle_control_mode)};
uORB::Subscription _vehicle_air_data_sub{ORB_ID(vehicle_air_data)};
uORB::Publication<airspeed_s> _airspeed_pub{ORB_ID(airspeed)};
uORB::Publication<sensor_combined_s> _sensor_pub{ORB_ID(sensor_combined)};
perf_counter_t _loop_perf; /**< loop performance counter */
DataValidator _airspeed_validator; /**< data validator to monitor airspeed */
#ifdef ADC_AIRSPEED_VOLTAGE_CHANNEL
hrt_abstime _last_adc{0}; /**< last time we took input from the ADC */
uORB::Subscription _adc_report_sub{ORB_ID(adc_report)}; /**< adc_report sub */
differential_pressure_s _diff_pres {};
uORB::PublicationMulti<differential_pressure_s> _diff_pres_pub{ORB_ID(differential_pressure)}; /**< differential_pressure */
#endif /* ADC_AIRSPEED_VOLTAGE_CHANNEL */
struct Parameters {
float diff_pres_offset_pa;
#ifdef ADC_AIRSPEED_VOLTAGE_CHANNEL
float diff_pres_analog_scale;
#endif /* ADC_AIRSPEED_VOLTAGE_CHANNEL */
int32_t air_cmodel;
float air_tube_length;
float air_tube_diameter_mm;
} _parameters{}; /**< local copies of interesting parameters */
struct ParameterHandles {
param_t diff_pres_offset_pa;
#ifdef ADC_AIRSPEED_VOLTAGE_CHANNEL
param_t diff_pres_analog_scale;
#endif /* ADC_AIRSPEED_VOLTAGE_CHANNEL */
param_t air_cmodel;
param_t air_tube_length;
param_t air_tube_diameter_mm;
} _parameter_handles{}; /**< handles for interesting parameters */
VotedSensorsUpdate _voted_sensors_update;
VehicleAcceleration _vehicle_acceleration;
VehicleAngularVelocity _vehicle_angular_velocity;
VehicleAirData *_vehicle_air_data{nullptr};
VehicleMagnetometer *_vehicle_magnetometer{nullptr};
VehicleGPSPosition *_vehicle_gps_position{nullptr};
VehicleIMU *_vehicle_imu_list[MAX_SENSOR_COUNT] {};
/**
* Update our local parameter cache.
*/
int parameters_update();
/**
* Poll the differential pressure sensor for updated data.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void diff_pres_poll();
/**
* Check for changes in parameters.
*/
void parameter_update_poll(bool forced = false);
/**
* Poll the ADC and update readings to suit.
*
* @param raw Combined sensor data structure into which
* data should be returned.
*/
void adc_poll();
void InitializeVehicleAirData();
void InitializeVehicleGPSPosition();
void InitializeVehicleIMU();
void InitializeVehicleMagnetometer();
DEFINE_PARAMETERS(
(ParamBool<px4::params::SYS_HAS_BARO>) _param_sys_has_baro,
(ParamBool<px4::params::SYS_HAS_MAG>) _param_sys_has_mag,
(ParamBool<px4::params::SENS_IMU_MODE>) _param_sens_imu_mode
)
};
Sensors::Sensors(bool hil_enabled) :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
_hil_enabled(hil_enabled),
_loop_perf(perf_alloc(PC_ELAPSED, "sensors")),
_voted_sensors_update(hil_enabled, _vehicle_imu_sub)
{
/* Differential pressure offset */
_parameter_handles.diff_pres_offset_pa = param_find("SENS_DPRES_OFF");
#ifdef ADC_AIRSPEED_VOLTAGE_CHANNEL
_parameter_handles.diff_pres_analog_scale = param_find("SENS_DPRES_ANSC");
#endif /* ADC_AIRSPEED_VOLTAGE_CHANNEL */
_parameter_handles.air_cmodel = param_find("CAL_AIR_CMODEL");
_parameter_handles.air_tube_length = param_find("CAL_AIR_TUBELEN");
_parameter_handles.air_tube_diameter_mm = param_find("CAL_AIR_TUBED_MM");
param_find("SYS_FAC_CAL_MODE");
// Parameters controlling the on-board sensor thermal calibrator
param_find("SYS_CAL_TDEL");
param_find("SYS_CAL_TMAX");
param_find("SYS_CAL_TMIN");
_airspeed_validator.set_timeout(300000);
_airspeed_validator.set_equal_value_threshold(100);
_vehicle_acceleration.Start();
_vehicle_angular_velocity.Start();
}
Sensors::~Sensors()
{
// clear all registered callbacks
for (auto &sub : _vehicle_imu_sub) {
sub.unregisterCallback();
}
_vehicle_acceleration.Stop();
_vehicle_angular_velocity.Stop();
if (_vehicle_air_data) {
_vehicle_air_data->Stop();
delete _vehicle_air_data;
}
if (_vehicle_gps_position) {
_vehicle_gps_position->Stop();
delete _vehicle_gps_position;
}
if (_vehicle_magnetometer) {
_vehicle_magnetometer->Stop();
delete _vehicle_magnetometer;
}
for (auto &vehicle_imu : _vehicle_imu_list) {
if (vehicle_imu) {
vehicle_imu->Stop();
delete vehicle_imu;
}
}
perf_free(_loop_perf);
}
bool Sensors::init()
{
_vehicle_imu_sub[0].registerCallback();
ScheduleNow();
return true;
}
int Sensors::parameters_update()
{
if (_armed) {
return 0;
}
/* Airspeed offset */
param_get(_parameter_handles.diff_pres_offset_pa, &(_parameters.diff_pres_offset_pa));
#ifdef ADC_AIRSPEED_VOLTAGE_CHANNEL
param_get(_parameter_handles.diff_pres_analog_scale, &(_parameters.diff_pres_analog_scale));
#endif /* ADC_AIRSPEED_VOLTAGE_CHANNEL */
param_get(_parameter_handles.air_cmodel, &_parameters.air_cmodel);
param_get(_parameter_handles.air_tube_length, &_parameters.air_tube_length);
param_get(_parameter_handles.air_tube_diameter_mm, &_parameters.air_tube_diameter_mm);
_voted_sensors_update.parametersUpdate();
return PX4_OK;
}
void Sensors::diff_pres_poll()
{
differential_pressure_s diff_pres{};
if (_diff_pres_sub.update(&diff_pres)) {
vehicle_air_data_s air_data{};
_vehicle_air_data_sub.copy(&air_data);
float air_temperature_celsius = NAN;
// assume anything outside of a (generous) operating range of -40C to 125C is invalid
if (PX4_ISFINITE(diff_pres.temperature) && (diff_pres.temperature >= -40.f) && (diff_pres.temperature <= 125.f)) {
air_temperature_celsius = diff_pres.temperature;
} else {
// differential pressure temperature invalid, check barometer
if ((air_data.timestamp != 0) && PX4_ISFINITE(air_data.baro_temp_celcius)
&& (air_data.baro_temp_celcius >= -40.f) && (air_data.baro_temp_celcius <= 125.f)) {
// TODO: review PCB_TEMP_ESTIMATE_DEG, ignore for external baro
air_temperature_celsius = air_data.baro_temp_celcius - PCB_TEMP_ESTIMATE_DEG;
}
}
airspeed_s airspeed{};
airspeed.timestamp = diff_pres.timestamp;
/* push data into validator */
float airspeed_input[3] = { diff_pres.differential_pressure_raw_pa, diff_pres.temperature, 0.0f };
_airspeed_validator.put(airspeed.timestamp, airspeed_input, diff_pres.error_count, 100); // TODO: real priority?
airspeed.confidence = _airspeed_validator.confidence(hrt_absolute_time());
enum AIRSPEED_SENSOR_MODEL smodel;
switch ((diff_pres.device_id >> 16) & 0xFF) {
case DRV_DIFF_PRESS_DEVTYPE_SDP31:
/* fallthrough */
case DRV_DIFF_PRESS_DEVTYPE_SDP32:
/* fallthrough */
case DRV_DIFF_PRESS_DEVTYPE_SDP33:
/* fallthrough */
smodel = AIRSPEED_SENSOR_MODEL_SDP3X;
break;
default:
smodel = AIRSPEED_SENSOR_MODEL_MEMBRANE;
break;
}
/* don't risk to feed negative airspeed into the system */
airspeed.indicated_airspeed_m_s = calc_IAS_corrected((enum AIRSPEED_COMPENSATION_MODEL)
_parameters.air_cmodel,
smodel, _parameters.air_tube_length, _parameters.air_tube_diameter_mm,
diff_pres.differential_pressure_filtered_pa, air_data.baro_pressure_pa,
air_temperature_celsius);
airspeed.true_airspeed_m_s = calc_TAS_from_CAS(airspeed.indicated_airspeed_m_s, air_data.baro_pressure_pa,
air_temperature_celsius); // assume that CAS = IAS as we don't have an CAS-scale here
airspeed.air_temperature_celsius = air_temperature_celsius;
if (PX4_ISFINITE(airspeed.indicated_airspeed_m_s) && PX4_ISFINITE(airspeed.true_airspeed_m_s)) {
_airspeed_pub.publish(airspeed);
}
}
}
void
Sensors::parameter_update_poll(bool forced)
{
// check for parameter updates
if (_parameter_update_sub.updated() || forced) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
parameters_update();
updateParams();
/* update airspeed scale */
int fd = px4_open(AIRSPEED0_DEVICE_PATH, 0);
/* this sensor is optional, abort without error */
if (fd >= 0) {
struct airspeed_scale airscale = {
_parameters.diff_pres_offset_pa,
1.0f,
};
if (OK != px4_ioctl(fd, AIRSPEEDIOCSSCALE, (long unsigned int)&airscale)) {
warn("WARNING: failed to set scale / offsets for airspeed sensor");
}
px4_close(fd);
}
}
}
void Sensors::adc_poll()
{
/* only read if not in HIL mode */
if (_hil_enabled) {
return;
}
#ifdef ADC_AIRSPEED_VOLTAGE_CHANNEL
if (_parameters.diff_pres_analog_scale > 0.0f) {
hrt_abstime t = hrt_absolute_time();
/* rate limit to 100 Hz */
if (t - _last_adc >= 10000) {
adc_report_s adc;
if (_adc_report_sub.update(&adc)) {
/* Read add channels we got */
for (unsigned i = 0; i < PX4_MAX_ADC_CHANNELS; i++) {
if (adc.channel_id[i] == -1) {
continue; // skip non-exist channels
}
if (ADC_AIRSPEED_VOLTAGE_CHANNEL == adc.channel_id[i]) {
/* calculate airspeed, raw is the difference from */
const float voltage = (float)(adc.raw_data[i]) * adc.v_ref / adc.resolution * ADC_DP_V_DIV;
/**
* The voltage divider pulls the signal down, only act on
* a valid voltage from a connected sensor. Also assume a non-
* zero offset from the sensor if its connected.
*
* Notice: This won't work on devices which have PGA controlled
* vref. Those devices require no divider at all.
*/
if (voltage > 0.4f) {
const float diff_pres_pa_raw = voltage * _parameters.diff_pres_analog_scale - _parameters.diff_pres_offset_pa;
_diff_pres.timestamp = t;
_diff_pres.differential_pressure_raw_pa = diff_pres_pa_raw;
_diff_pres.differential_pressure_filtered_pa = (_diff_pres.differential_pressure_filtered_pa * 0.9f) +
(diff_pres_pa_raw * 0.1f);
_diff_pres.temperature = -1000.0f;
_diff_pres_pub.publish(_diff_pres);
}
}
}
}
_last_adc = t;
}
}
#endif /* ADC_AIRSPEED_VOLTAGE_CHANNEL */
}
void Sensors::InitializeVehicleAirData()
{
if (_param_sys_has_baro.get()) {
if (_vehicle_air_data == nullptr) {
if (orb_exists(ORB_ID(sensor_baro), 0) == PX4_OK) {
_vehicle_air_data = new VehicleAirData();
if (_vehicle_air_data) {
_vehicle_air_data->Start();
}
}
}
}
}
void Sensors::InitializeVehicleGPSPosition()
{
if (_vehicle_gps_position == nullptr) {
if (orb_exists(ORB_ID(sensor_gps), 0) == PX4_OK) {
_vehicle_gps_position = new VehicleGPSPosition();
if (_vehicle_gps_position) {
_vehicle_gps_position->Start();
}
}
}
}
void Sensors::InitializeVehicleIMU()
{
// create a VehicleIMU instance for each accel/gyro pair
for (uint8_t i = 0; i < MAX_SENSOR_COUNT; i++) {
if (_vehicle_imu_list[i] == nullptr) {
uORB::Subscription accel_sub{ORB_ID(sensor_accel), i};
sensor_accel_s accel{};
accel_sub.copy(&accel);
uORB::Subscription gyro_sub{ORB_ID(sensor_gyro), i};
sensor_gyro_s gyro{};
gyro_sub.copy(&gyro);
if (accel.device_id > 0 && gyro.device_id > 0) {
// if the sensors module is responsible for voting (SENS_IMU_MODE 1) then run every VehicleIMU in the same WQ
// otherwise each VehicleIMU runs in a corresponding INSx WQ
const bool multi_mode = (_param_sens_imu_mode.get() == 0);
const px4::wq_config_t &wq_config = multi_mode ? px4::ins_instance_to_wq(i) : px4::wq_configurations::INS0;
VehicleIMU *imu = new VehicleIMU(i, i, i, wq_config);
if (imu != nullptr) {
// Start VehicleIMU instance and store
if (imu->Start()) {
_vehicle_imu_list[i] = imu;
} else {
delete imu;
}
}
} else {
// abort on first failure, try again later
return;
}
}
}
}
void Sensors::InitializeVehicleMagnetometer()
{
if (_param_sys_has_mag.get()) {
if (_vehicle_magnetometer == nullptr) {
if (orb_exists(ORB_ID(sensor_mag), 0) == PX4_OK) {
_vehicle_magnetometer = new VehicleMagnetometer();
if (_vehicle_magnetometer) {
_vehicle_magnetometer->Start();
}
}
}
}
}
void Sensors::Run()
{
if (should_exit()) {
// clear all registered callbacks
for (auto &sub : _vehicle_imu_sub) {
sub.unregisterCallback();
}
exit_and_cleanup();
return;
}
// run once
if (_last_config_update == 0) {
InitializeVehicleAirData();
InitializeVehicleIMU();
InitializeVehicleGPSPosition();
InitializeVehicleMagnetometer();
_voted_sensors_update.init(_sensor_combined);
parameter_update_poll(true);
}
perf_begin(_loop_perf);
// backup schedule as a watchdog timeout
ScheduleDelayed(10_ms);
// check vehicle status for changes to publication state
if (_vcontrol_mode_sub.updated()) {
vehicle_control_mode_s vcontrol_mode{};
if (_vcontrol_mode_sub.copy(&vcontrol_mode)) {
_armed = vcontrol_mode.flag_armed;
}
}
_voted_sensors_update.sensorsPoll(_sensor_combined);
// check analog airspeed
adc_poll();
diff_pres_poll();
if (_sensor_combined.timestamp != _sensor_combined_prev_timestamp) {
_voted_sensors_update.setRelativeTimestamps(_sensor_combined);
_sensor_pub.publish(_sensor_combined);
_sensor_combined_prev_timestamp = _sensor_combined.timestamp;
}
// keep adding sensors as long as we are not armed,
// when not adding sensors poll for param updates
if (!_armed && hrt_elapsed_time(&_last_config_update) > 500_ms) {
_voted_sensors_update.initializeSensors();
InitializeVehicleAirData();
InitializeVehicleIMU();
InitializeVehicleGPSPosition();
InitializeVehicleMagnetometer();
_last_config_update = hrt_absolute_time();
} else {
// check parameters for updates
parameter_update_poll();
}
perf_end(_loop_perf);
}
int Sensors::task_spawn(int argc, char *argv[])
{
bool hil_enabled = false;
bool error_flag = false;
int myoptind = 1;
int ch;
const char *myoptarg = nullptr;
while ((ch = px4_getopt(argc, argv, "h", &myoptind, &myoptarg)) != EOF) {
switch (ch) {
case 'h':
hil_enabled = true;
break;
case '?':
error_flag = true;
break;
default:
PX4_WARN("unrecognized flag");
error_flag = true;
break;
}
}
if (error_flag) {
return PX4_ERROR;
}
Sensors *instance = new Sensors(hil_enabled);
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int Sensors::print_status()
{
_voted_sensors_update.printStatus();
if (_vehicle_magnetometer) {
PX4_INFO_RAW("\n");
_vehicle_magnetometer->PrintStatus();
}
if (_vehicle_air_data) {
PX4_INFO_RAW("\n");
_vehicle_air_data->PrintStatus();
}
PX4_INFO_RAW("\n");
PX4_INFO("Airspeed status:");
_airspeed_validator.print();
PX4_INFO_RAW("\n");
_vehicle_acceleration.PrintStatus();
PX4_INFO_RAW("\n");
_vehicle_angular_velocity.PrintStatus();
if (_vehicle_gps_position) {
PX4_INFO_RAW("\n");
_vehicle_gps_position->PrintStatus();
}
PX4_INFO_RAW("\n");
for (auto &i : _vehicle_imu_list) {
if (i != nullptr) {
PX4_INFO_RAW("\n");
i->PrintStatus();
}
}
return 0;
}
int Sensors::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int Sensors::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
The sensors module is central to the whole system. It takes low-level output from drivers, turns
it into a more usable form, and publishes it for the rest of the system.
The provided functionality includes:
- Read the output from the sensor drivers (`sensor_gyro`, etc.).
If there are multiple of the same type, do voting and failover handling.
Then apply the board rotation and temperature calibration (if enabled). And finally publish the data; one of the
topics is `sensor_combined`, used by many parts of the system.
- Make sure the sensor drivers get the updated calibration parameters (scale & offset) when the parameters change or
on startup. The sensor drivers use the ioctl interface for parameter updates. For this to work properly, the
sensor drivers must already be running when `sensors` is started.
- Do sensor consistency checks and publish the `sensors_status_imu` topic.
### Implementation
It runs in its own thread and polls on the currently selected gyro topic.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("sensors", "system");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAM_FLAG('h', "Start in HIL mode", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int sensors_main(int argc, char *argv[])
{
return Sensors::main(argc, argv);
}