mavlink_timesync.cpp
7.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/****************************************************************************
*
* Copyright (c) 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mavlink_timesync.cpp
* Mavlink timesync implementation.
*
* @author Mohammed Kabir <mhkabir98@gmail.com>
*/
#include "mavlink_timesync.h"
#include "mavlink_main.h"
#include <stdlib.h>
MavlinkTimesync::MavlinkTimesync(Mavlink *mavlink) :
_mavlink(mavlink)
{
}
void
MavlinkTimesync::handle_message(const mavlink_message_t *msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_TIMESYNC: {
mavlink_timesync_t tsync = {};
mavlink_msg_timesync_decode(msg, &tsync);
const uint64_t now = hrt_absolute_time();
if (tsync.tc1 == 0) { // Message originating from remote system, timestamp and return it
mavlink_timesync_t rsync;
rsync.tc1 = now * 1000ULL;
rsync.ts1 = tsync.ts1;
mavlink_msg_timesync_send_struct(_mavlink->get_channel(), &rsync);
return;
} else if (tsync.tc1 > 0) { // Message originating from this system, compute time offset from it
// Calculate time offset between this system and the remote system, assuming RTT for
// the timesync packet is roughly equal both ways.
int64_t offset_us = (int64_t)((tsync.ts1 / 1000ULL) + now - (tsync.tc1 / 1000ULL) * 2) / 2 ;
// Calculate the round trip time (RTT) it took the timesync packet to bounce back to us from remote system
uint64_t rtt_us = now - (tsync.ts1 / 1000ULL);
// Calculate the difference of this sample from the current estimate
uint64_t deviation = llabs((int64_t)_time_offset - offset_us);
if (rtt_us < MAX_RTT_SAMPLE) { // Only use samples with low RTT
if (sync_converged() && (deviation > MAX_DEVIATION_SAMPLE)) {
// Increment the counter if we have a good estimate and are getting samples far from the estimate
_high_deviation_count++;
// We reset the filter if we received 5 consecutive samples which violate our present estimate.
// This is most likely due to a time jump on the offboard system.
if (_high_deviation_count > MAX_CONSECUTIVE_HIGH_DEVIATION) {
PX4_ERR("[timesync] Time jump detected. Resetting time synchroniser.");
// Reset the filter
reset_filter();
}
} else {
// Filter gain scheduling
if (!sync_converged()) {
// Interpolate with a sigmoid function
double progress = (double)_sequence / (double)CONVERGENCE_WINDOW;
double p = 1.0 - exp(0.5 * (1.0 - 1.0 / (1.0 - progress)));
_filter_alpha = p * ALPHA_GAIN_FINAL + (1.0 - p) * ALPHA_GAIN_INITIAL;
_filter_beta = p * BETA_GAIN_FINAL + (1.0 - p) * BETA_GAIN_INITIAL;
} else {
_filter_alpha = ALPHA_GAIN_FINAL;
_filter_beta = BETA_GAIN_FINAL;
}
// Perform filter update
add_sample(offset_us);
// Increment sequence counter after filter update
_sequence++;
// Reset high deviation count after filter update
_high_deviation_count = 0;
// Reset high RTT count after filter update
_high_rtt_count = 0;
}
} else {
// Increment counter if round trip time is too high for accurate timesync
_high_rtt_count++;
if (_high_rtt_count > MAX_CONSECUTIVE_HIGH_RTT) {
PX4_WARN("[timesync] RTT too high for timesync: %llu ms (sender: %i)", rtt_us / 1000ULL, msg->compid);
// Reset counter to rate-limit warnings
_high_rtt_count = 0;
}
}
// Publish status message
timesync_status_s tsync_status{};
tsync_status.timestamp = hrt_absolute_time();
tsync_status.remote_timestamp = tsync.tc1 / 1000ULL;
tsync_status.observed_offset = offset_us;
tsync_status.estimated_offset = (int64_t)_time_offset;
tsync_status.round_trip_time = rtt_us;
_timesync_status_pub.publish(tsync_status);
}
break;
}
case MAVLINK_MSG_ID_SYSTEM_TIME: {
mavlink_system_time_t time;
mavlink_msg_system_time_decode(msg, &time);
timespec tv = {};
px4_clock_gettime(CLOCK_REALTIME, &tv);
// date -d @1234567890: Sat Feb 14 02:31:30 MSK 2009
bool onb_unix_valid = (unsigned long long)tv.tv_sec > PX4_EPOCH_SECS;
bool ofb_unix_valid = time.time_unix_usec > PX4_EPOCH_SECS * 1000ULL;
if (!onb_unix_valid && ofb_unix_valid) {
tv.tv_sec = time.time_unix_usec / 1000000ULL;
tv.tv_nsec = (time.time_unix_usec % 1000000ULL) * 1000ULL;
if (px4_clock_settime(CLOCK_REALTIME, &tv)) {
PX4_ERR("[timesync] Failed setting realtime clock");
}
}
break;
}
default:
break;
}
}
uint64_t
MavlinkTimesync::sync_stamp(uint64_t usec)
{
// Only return synchronised stamp if we have converged to a good value
if (sync_converged()) {
return usec + (int64_t)_time_offset;
} else {
return hrt_absolute_time();
}
}
bool
MavlinkTimesync::sync_converged()
{
return _sequence >= CONVERGENCE_WINDOW;
}
void
MavlinkTimesync::add_sample(int64_t offset_us)
{
/* Online exponential smoothing filter. The derivative of the estimate is also
* estimated in order to produce an estimate without steady state lag:
* https://en.wikipedia.org/wiki/Exponential_smoothing#Double_exponential_smoothing
*/
double time_offset_prev = _time_offset;
if (_sequence == 0) { // First offset sample
_time_offset = offset_us;
} else {
// Update the clock offset estimate
_time_offset = _filter_alpha * offset_us + (1.0 - _filter_alpha) * (_time_offset + _time_skew);
// Update the clock skew estimate
_time_skew = _filter_beta * (_time_offset - time_offset_prev) + (1.0 - _filter_beta) * _time_skew;
}
}
void
MavlinkTimesync::reset_filter()
{
// Do a full reset of all statistics and parameters
_sequence = 0;
_time_offset = 0.0;
_time_skew = 0.0;
_filter_alpha = ALPHA_GAIN_INITIAL;
_filter_beta = BETA_GAIN_INITIAL;
_high_deviation_count = 0;
_high_rtt_count = 0;
}