squareMatrix.cpp
4.89 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include "test_macros.hpp"
#include <matrix/math.hpp>
using namespace matrix;
int main()
{
float data[9] = {1, 2, 3,
4, 5, 6,
7, 8, 10
};
SquareMatrix<float, 3> A(data);
Vector3<float> diag_check(1, 5, 10);
TEST(isEqual(A.diag(), diag_check));
TEST(A.trace() - 16 < FLT_EPSILON);
float data_check[9] = {
1.01158503f, 0.02190432f, 0.03238144f,
0.04349195f, 1.05428524f, 0.06539627f,
0.07576783f, 0.08708946f, 1.10894048f
};
float dt = 0.01f;
SquareMatrix<float, 3> eA = expm(SquareMatrix<float, 3>(A*dt), 5);
SquareMatrix<float, 3> eA_check(data_check);
TEST((eA - eA_check).abs().max() < 1e-3f);
SquareMatrix<float, 2> A_bottomright = A.slice<2,2>(1,1);
SquareMatrix<float, 2> A_bottomright2;
A_bottomright2 = A.slice<2,2>(1,1);
float data_bottomright[4] = {5, 6,
8, 10
};
SquareMatrix<float, 2> bottomright_check(data_bottomright);
TEST(isEqual(A_bottomright, bottomright_check));
TEST(isEqual(A_bottomright2, bottomright_check));
// test diagonal functions
float data_4x4[16] = {1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14,15, 16
};
SquareMatrix<float, 4> B(data_4x4);
B.uncorrelateCovariance<1>(1);
float data_B_check[16] = {1, 0, 3, 4,
0, 6, 0, 0,
9, 0, 11, 12,
13, 0,15, 16
};
SquareMatrix<float, 4> B_check(data_B_check);
TEST(isEqual(B, B_check))
SquareMatrix<float, 4> C(data_4x4);
C.uncorrelateCovariance<2>(1);
float data_C_check[16] = {1, 0, 0, 4,
0, 6, 0, 0,
0, 0, 11, 0,
13, 0,0, 16
};
SquareMatrix<float, 4> C_check(data_C_check);
TEST(isEqual(C, C_check))
SquareMatrix<float, 4> D(data_4x4);
D.uncorrelateCovarianceSetVariance<2>(0, Vector2f{20,21});
float data_D_check[16] = {20, 0, 0, 0,
0, 21, 0, 0,
0, 0, 11, 12,
0, 0,15, 16
};
SquareMatrix<float, 4> D_check(data_D_check);
TEST(isEqual(D, D_check))
SquareMatrix<float, 4> E(data_4x4);
E.uncorrelateCovarianceSetVariance<3>(1, 33);
float data_E_check[16] = {1, 0, 0, 0,
0, 33, 0, 0,
0, 0, 33, 0,
0, 0,0, 33
};
SquareMatrix<float, 4> E_check(data_E_check);
TEST(isEqual(E, E_check))
// test symmetric functions
SquareMatrix<float, 4> F(data_4x4);
F.makeBlockSymmetric<2>(1);
float data_F_check[16] = {1, 2, 3, 4,
5, 6, 8.5, 8,
9, 8.5, 11, 12,
13, 14,15, 16
};
SquareMatrix<float, 4> F_check(data_F_check);
TEST(isEqual(F, F_check))
TEST(F.isBlockSymmetric<2>(1));
TEST(!F.isRowColSymmetric<2>(1));
SquareMatrix<float, 4> G(data_4x4);
G.makeRowColSymmetric<2>(1);
float data_G_check[16] = {1, 3.5, 6, 4,
3.5, 6, 8.5, 11,
6, 8.5, 11, 13.5,
13, 11,13.5, 16
};
SquareMatrix<float, 4> G_check(data_G_check);
TEST(isEqual(G, G_check));
TEST(G.isBlockSymmetric<2>(1));
TEST(G.isRowColSymmetric<2>(1));
SquareMatrix<float, 4> H(data_4x4);
H.makeBlockSymmetric<1>(1);
float data_H_check[16] = {1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14,15, 16
};
SquareMatrix<float, 4> H_check(data_H_check);
TEST(isEqual(H, H_check))
TEST(H.isBlockSymmetric<1>(1));
TEST(!H.isRowColSymmetric<1>(1));
SquareMatrix<float, 4> J(data_4x4);
J.makeRowColSymmetric<1>(1);
float data_J_check[16] = {1, 3.5, 3, 4,
3.5, 6, 8.5, 11,
9, 8.5, 11, 12,
13, 11,15, 16
};
SquareMatrix<float, 4> J_check(data_J_check);
TEST(isEqual(J, J_check));
TEST(J.isBlockSymmetric<1>(1));
TEST(J.isRowColSymmetric<1>(1));
TEST(!J.isBlockSymmetric<3>(1));
float data_K[16] = {1, 2, 3, 4,
2, 3, 4, 11,
3, 4, 11, 12,
4, 11,15, 16
};
SquareMatrix<float, 4> K(data_K);
TEST(!K.isRowColSymmetric<1>(2));
return 0;
}
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */