ECL_L1_Pos_Controller.cpp
14.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/****************************************************************************
*
* Copyright (c) 2013-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ECL_L1_Pos_Controller.cpp
* Implementation of L1 position control.
* Authors and acknowledgements in header.
*
*/
#include "ECL_L1_Pos_Controller.hpp"
#include <lib/ecl/geo/geo.h>
#include <px4_platform_common/defines.h>
#include <float.h>
using matrix::Vector2d;
using matrix::Vector2f;
using matrix::wrap_pi;
void ECL_L1_Pos_Controller::update_roll_setpoint()
{
float roll_new = atanf(_lateral_accel * 1.0f / CONSTANTS_ONE_G);
roll_new = math::constrain(roll_new, -_roll_lim_rad, _roll_lim_rad);
if (_dt > 0.0f && _roll_slew_rate > 0.0f) {
// slew rate limiting active
roll_new = math::constrain(roll_new, _roll_setpoint - _roll_slew_rate * _dt, _roll_setpoint + _roll_slew_rate * _dt);
}
if (PX4_ISFINITE(roll_new)) {
_roll_setpoint = roll_new;
}
}
float ECL_L1_Pos_Controller::switch_distance(float wp_radius)
{
/* following [2], switching on L1 distance */
return math::min(wp_radius, _L1_distance);
}
void
ECL_L1_Pos_Controller::navigate_waypoints(const Vector2d &vector_A, const Vector2d &vector_B,
const Vector2d &vector_curr_position, const Vector2f &ground_speed_vector)
{
/* this follows the logic presented in [1] */
float eta = 0.0f;
/* get the direction between the last (visited) and next waypoint */
_target_bearing = get_bearing_to_next_waypoint(vector_curr_position(0), vector_curr_position(1), vector_B(0),
vector_B(1));
/* enforce a minimum ground speed of 0.1 m/s to avoid singularities */
float ground_speed = math::max(ground_speed_vector.length(), 0.1f);
/* calculate the L1 length required for the desired period */
_L1_distance = _L1_ratio * ground_speed;
/* calculate vector from A to B */
Vector2f vector_AB = get_local_planar_vector(vector_A, vector_B);
/*
* check if waypoints are on top of each other. If yes,
* skip A and directly continue to B
*/
if (vector_AB.length() < 1.0e-6f) {
vector_AB = get_local_planar_vector(vector_curr_position, vector_B);
}
vector_AB.normalize();
/* calculate the vector from waypoint A to the aircraft */
Vector2f vector_A_to_airplane = get_local_planar_vector(vector_A, vector_curr_position);
/* calculate crosstrack error (output only) */
_crosstrack_error = vector_AB % vector_A_to_airplane;
/*
* If the current position is in a +-135 degree angle behind waypoint A
* and further away from A than the L1 distance, then A becomes the L1 point.
* If the aircraft is already between A and B normal L1 logic is applied.
*/
float distance_A_to_airplane = vector_A_to_airplane.length();
float alongTrackDist = vector_A_to_airplane * vector_AB;
/* estimate airplane position WRT to B */
Vector2f vector_B_to_P_unit = get_local_planar_vector(vector_B, vector_curr_position).normalized();
/* calculate angle of airplane position vector relative to line) */
// XXX this could probably also be based solely on the dot product
float AB_to_BP_bearing = atan2f(vector_B_to_P_unit % vector_AB, vector_B_to_P_unit * vector_AB);
/* extension from [2], fly directly to A */
if (distance_A_to_airplane > _L1_distance && alongTrackDist / math::max(distance_A_to_airplane, 1.0f) < -0.7071f) {
/* calculate eta to fly to waypoint A */
/* unit vector from waypoint A to current position */
Vector2f vector_A_to_airplane_unit = vector_A_to_airplane.normalized();
/* velocity across / orthogonal to line */
float xtrack_vel = ground_speed_vector % (-vector_A_to_airplane_unit);
/* velocity along line */
float ltrack_vel = ground_speed_vector * (-vector_A_to_airplane_unit);
eta = atan2f(xtrack_vel, ltrack_vel);
/* bearing from current position to L1 point */
_nav_bearing = atan2f(-vector_A_to_airplane_unit(1), -vector_A_to_airplane_unit(0));
/*
* If the AB vector and the vector from B to airplane point in the same
* direction, we have missed the waypoint. At +- 90 degrees we are just passing it.
*/
} else if (fabsf(AB_to_BP_bearing) < math::radians(100.0f)) {
/*
* Extension, fly back to waypoint.
*
* This corner case is possible if the system was following
* the AB line from waypoint A to waypoint B, then is
* switched to manual mode (or otherwise misses the waypoint)
* and behind the waypoint continues to follow the AB line.
*/
/* calculate eta to fly to waypoint B */
/* velocity across / orthogonal to line */
float xtrack_vel = ground_speed_vector % (-vector_B_to_P_unit);
/* velocity along line */
float ltrack_vel = ground_speed_vector * (-vector_B_to_P_unit);
eta = atan2f(xtrack_vel, ltrack_vel);
/* bearing from current position to L1 point */
_nav_bearing = atan2f(-vector_B_to_P_unit(1), -vector_B_to_P_unit(0));
} else {
/* calculate eta to fly along the line between A and B */
/* velocity across / orthogonal to line */
float xtrack_vel = ground_speed_vector % vector_AB;
/* velocity along line */
float ltrack_vel = ground_speed_vector * vector_AB;
/* calculate eta2 (angle of velocity vector relative to line) */
float eta2 = atan2f(xtrack_vel, ltrack_vel);
/* calculate eta1 (angle to L1 point) */
float xtrackErr = vector_A_to_airplane % vector_AB;
float sine_eta1 = xtrackErr / math::max(_L1_distance, 0.1f);
/* limit output to 45 degrees */
sine_eta1 = math::constrain(sine_eta1, -0.7071f, 0.7071f); //sin(pi/4) = 0.7071
float eta1 = asinf(sine_eta1);
eta = eta1 + eta2;
/* bearing from current position to L1 point */
_nav_bearing = atan2f(vector_AB(1), vector_AB(0)) + eta1;
}
/* limit angle to +-90 degrees */
eta = math::constrain(eta, (-M_PI_F) / 2.0f, +M_PI_F / 2.0f);
_lateral_accel = _K_L1 * ground_speed * ground_speed / _L1_distance * sinf(eta);
/* flying to waypoints, not circling them */
_circle_mode = false;
/* the bearing angle, in NED frame */
_bearing_error = eta;
update_roll_setpoint();
}
void
ECL_L1_Pos_Controller::navigate_loiter(const Vector2d &vector_A, const Vector2d &vector_curr_position, float radius,
int8_t loiter_direction, const Vector2f &ground_speed_vector)
{
/* the complete guidance logic in this section was proposed by [2] */
/* calculate the gains for the PD loop (circle tracking) */
float omega = (2.0f * M_PI_F / _L1_period);
float K_crosstrack = omega * omega;
float K_velocity = 2.0f * _L1_damping * omega;
/* update bearing to next waypoint */
_target_bearing = get_bearing_to_next_waypoint(vector_curr_position(0), vector_curr_position(1), vector_A(0),
vector_A(1));
/* ground speed, enforce minimum of 0.1 m/s to avoid singularities */
float ground_speed = math::max(ground_speed_vector.length(), 0.1f);
/* calculate the L1 length required for the desired period */
_L1_distance = _L1_ratio * ground_speed;
/* calculate the vector from waypoint A to current position */
Vector2f vector_A_to_airplane = get_local_planar_vector(vector_A, vector_curr_position);
Vector2f vector_A_to_airplane_unit;
/* prevent NaN when normalizing */
if (vector_A_to_airplane.length() > FLT_EPSILON) {
/* store the normalized vector from waypoint A to current position */
vector_A_to_airplane_unit = vector_A_to_airplane.normalized();
} else {
vector_A_to_airplane_unit = vector_A_to_airplane;
}
/* calculate eta angle towards the loiter center */
/* velocity across / orthogonal to line from waypoint to current position */
float xtrack_vel_center = vector_A_to_airplane_unit % ground_speed_vector;
/* velocity along line from waypoint to current position */
float ltrack_vel_center = - (ground_speed_vector * vector_A_to_airplane_unit);
float eta = atan2f(xtrack_vel_center, ltrack_vel_center);
/* limit eta to 90 degrees */
eta = math::constrain(eta, -M_PI_F / 2.0f, +M_PI_F / 2.0f);
/* calculate the lateral acceleration to capture the center point */
float lateral_accel_sp_center = _K_L1 * ground_speed * ground_speed / _L1_distance * sinf(eta);
/* for PD control: Calculate radial position and velocity errors */
/* radial velocity error */
float xtrack_vel_circle = -ltrack_vel_center;
/* radial distance from the loiter circle (not center) */
float xtrack_err_circle = vector_A_to_airplane.length() - radius;
/* cross track error for feedback */
_crosstrack_error = xtrack_err_circle;
/* calculate PD update to circle waypoint */
float lateral_accel_sp_circle_pd = (xtrack_err_circle * K_crosstrack + xtrack_vel_circle * K_velocity);
/* calculate velocity on circle / along tangent */
float tangent_vel = xtrack_vel_center * loiter_direction;
/* prevent PD output from turning the wrong way when in circle mode */
if (tangent_vel < 0.0f && _circle_mode) {
lateral_accel_sp_circle_pd = math::max(lateral_accel_sp_circle_pd, 0.0f);
}
/* calculate centripetal acceleration setpoint */
float lateral_accel_sp_circle_centripetal = tangent_vel * tangent_vel / math::max((0.5f * radius),
(radius + xtrack_err_circle));
/* add PD control on circle and centripetal acceleration for total circle command */
float lateral_accel_sp_circle = loiter_direction * (lateral_accel_sp_circle_pd + lateral_accel_sp_circle_centripetal);
/*
* Switch between circle (loiter) and capture (towards waypoint center) mode when
* the commands switch over. Only fly towards waypoint if outside the circle.
*/
// XXX check switch over
if ((lateral_accel_sp_center < lateral_accel_sp_circle && loiter_direction > 0 && xtrack_err_circle > 0.0f) ||
(lateral_accel_sp_center > lateral_accel_sp_circle && loiter_direction < 0 && xtrack_err_circle > 0.0f)) {
_lateral_accel = lateral_accel_sp_center;
_circle_mode = false;
/* angle between requested and current velocity vector */
_bearing_error = eta;
/* bearing from current position to L1 point */
_nav_bearing = atan2f(-vector_A_to_airplane_unit(1), -vector_A_to_airplane_unit(0));
} else {
_lateral_accel = lateral_accel_sp_circle;
_circle_mode = true;
_bearing_error = 0.0f;
/* bearing from current position to L1 point */
_nav_bearing = atan2f(-vector_A_to_airplane_unit(1), -vector_A_to_airplane_unit(0));
}
update_roll_setpoint();
}
void ECL_L1_Pos_Controller::navigate_heading(float navigation_heading, float current_heading,
const Vector2f &ground_speed_vector)
{
/* the complete guidance logic in this section was proposed by [2] */
/*
* As the commanded heading is the only reference
* (and no crosstrack correction occurs),
* target and navigation bearing become the same
*/
_target_bearing = _nav_bearing = wrap_pi(navigation_heading);
float eta = wrap_pi(_target_bearing - wrap_pi(current_heading));
/* consequently the bearing error is exactly eta: */
_bearing_error = eta;
/* ground speed is the length of the ground speed vector */
float ground_speed = ground_speed_vector.length();
/* adjust L1 distance to keep constant frequency */
_L1_distance = ground_speed / _heading_omega;
float omega_vel = ground_speed * _heading_omega;
/* not circling a waypoint */
_circle_mode = false;
/* navigating heading means by definition no crosstrack error */
_crosstrack_error = 0;
/* limit eta to 90 degrees */
eta = math::constrain(eta, (-M_PI_F) / 2.0f, +M_PI_F / 2.0f);
_lateral_accel = 2.0f * sinf(eta) * omega_vel;
update_roll_setpoint();
}
void ECL_L1_Pos_Controller::navigate_level_flight(float current_heading)
{
/* the logic in this section is trivial, but originally proposed by [2] */
/* reset all heading / error measures resulting in zero roll */
_target_bearing = current_heading;
_nav_bearing = current_heading;
_bearing_error = 0;
_crosstrack_error = 0;
_lateral_accel = 0;
/* not circling a waypoint when flying level */
_circle_mode = false;
update_roll_setpoint();
}
Vector2f ECL_L1_Pos_Controller::get_local_planar_vector(const Vector2d &origin, const Vector2d &target) const
{
/* this is an approximation for small angles, proposed by [2] */
const double x_angle = math::radians(target(0) - origin(0));
const double y_angle = math::radians(target(1) - origin(1));
const double x_origin_cos = cos(math::radians(origin(0)));
return Vector2f{
static_cast<float>(x_angle * CONSTANTS_RADIUS_OF_EARTH),
static_cast<float>(y_angle *x_origin_cos * CONSTANTS_RADIUS_OF_EARTH),
};
}
void ECL_L1_Pos_Controller::set_l1_period(float period)
{
_L1_period = period;
/* calculate the ratio introduced in [2] */
_L1_ratio = 1.0f / M_PI_F * _L1_damping * _L1_period;
/* calculate normalized frequency for heading tracking */
_heading_omega = sqrtf(2.0f) * M_PI_F / _L1_period;
}
void ECL_L1_Pos_Controller::set_l1_damping(float damping)
{
_L1_damping = damping;
/* calculate the ratio introduced in [2] */
_L1_ratio = 1.0f / M_PI_F * _L1_damping * _L1_period;
/* calculate the L1 gain (following [2]) */
_K_L1 = 4.0f * _L1_damping * _L1_damping;
}