test_EKF_flow.cpp
11.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/****************************************************************************
*
* Copyright (c) 2019 ECL Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* Test the flow fusion
* @author Kamil Ritz <ka.ritz@hotmail.com>
*/
#include <gtest/gtest.h>
#include "EKF/ekf.h"
#include "sensor_simulator/sensor_simulator.h"
#include "sensor_simulator/ekf_wrapper.h"
#include "test_helper/reset_logging_checker.h"
class EkfFlowTest : public ::testing::Test {
public:
EkfFlowTest(): ::testing::Test(),
_ekf{std::make_shared<Ekf>()},
_sensor_simulator(_ekf),
_ekf_wrapper(_ekf) {};
std::shared_ptr<Ekf> _ekf;
SensorSimulator _sensor_simulator;
EkfWrapper _ekf_wrapper;
// Setup the Ekf with synthetic measurements
void SetUp() override
{
const float max_flow_rate = 5.f;
const float min_ground_distance = 0.f;
const float max_ground_distance = 50.f;
_ekf->set_optical_flow_limits(max_flow_rate, min_ground_distance, max_ground_distance);
_ekf->init(0);
_sensor_simulator.runSeconds(7);
}
// Use this method to clean up any memory, network etc. after each test
void TearDown() override
{
}
void startRangeFinderFusion(float distance);
void startZeroFlowFusion();
void setFlowFromHorizontalVelocityAndDistance(flowSample &flow_sample, const Vector2f &simulated_horz_velocity, float estimated_distance_to_ground);
};
void EkfFlowTest::startRangeFinderFusion(float distance)
{
_sensor_simulator._rng.setData(distance, 100);
_sensor_simulator._rng.setLimits(0.1f, 9.f);
_sensor_simulator.startRangeFinder();
}
void EkfFlowTest::startZeroFlowFusion()
{
// Start fusing zero flow data
_sensor_simulator._flow.setData(_sensor_simulator._flow.dataAtRest());
_ekf_wrapper.enableFlowFusion();
_sensor_simulator.startFlow();
}
void EkfFlowTest::setFlowFromHorizontalVelocityAndDistance(flowSample &flow_sample, const Vector2f &simulated_horz_velocity, float estimated_distance_to_ground)
{
flow_sample.flow_xy_rad =
Vector2f( simulated_horz_velocity(1) * flow_sample.dt / estimated_distance_to_ground,
-simulated_horz_velocity(0) * flow_sample.dt / estimated_distance_to_ground);
}
TEST_F(EkfFlowTest, resetToFlowVelocityInAir)
{
ResetLoggingChecker reset_logging_checker(_ekf);
// WHEN: simulate being 5m above ground
const float simulated_distance_to_ground = 5.f;
startRangeFinderFusion(simulated_distance_to_ground);
_ekf->set_in_air_status(true);
_sensor_simulator.runSeconds(5.f);
const float estimated_distance_to_ground = _ekf->getTerrainVertPos();
EXPECT_FLOAT_EQ(estimated_distance_to_ground, simulated_distance_to_ground);
reset_logging_checker.capturePreResetState();
// WHEN: start fusing flow data
const Vector2f simulated_horz_velocity(0.5f, -0.2f);
flowSample flow_sample = _sensor_simulator._flow.dataAtRest();
setFlowFromHorizontalVelocityAndDistance(flow_sample, simulated_horz_velocity, estimated_distance_to_ground);
_sensor_simulator._flow.setData(flow_sample);
_ekf_wrapper.enableFlowFusion();
_sensor_simulator.startFlow();
// Let it reset but not fuse more measurements. We actually need to send 2
// samples to get a reset because the first one cannot be used as the gyro
// compensation needs to be accumulated between two samples.
_sensor_simulator.runSeconds(0.14);
// THEN: estimated velocity should match simulated velocity
const Vector2f estimated_horz_velocity = Vector2f(_ekf->getVelocity());
EXPECT_TRUE(isEqual(estimated_horz_velocity, simulated_horz_velocity))
<< "estimated vel = " << estimated_horz_velocity(0) << ", "
<< estimated_horz_velocity(1);
// AND: the reset in velocity should be saved correctly
reset_logging_checker.capturePostResetState();
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1));
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(0));
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(1e-9f));
}
TEST_F(EkfFlowTest, resetToFlowVelocityOnGround)
{
ResetLoggingChecker reset_logging_checker(_ekf);
// WHEN: being on ground
const float estimated_distance_to_ground = _ekf->getTerrainVertPos();
EXPECT_LT(estimated_distance_to_ground, 0.3f);
reset_logging_checker.capturePreResetState();
// WHEN: start fusing flow data
flowSample flow_sample = _sensor_simulator._flow.dataAtRest();
flow_sample.dt = 0.f; // some sensors force dt to zero when quality is low
flow_sample.quality = 0;
_sensor_simulator._flow.setData(flow_sample);
_ekf_wrapper.enableFlowFusion();
_sensor_simulator.startFlow();
_sensor_simulator.runSeconds(1.0);
// THEN: estimated velocity should match simulated velocity
const Vector2f estimated_horz_velocity = Vector2f(_ekf->getVelocity());
EXPECT_TRUE(isEqual(estimated_horz_velocity, Vector2f(0.f, 0.f)))
<< estimated_horz_velocity(0) << ", " << estimated_horz_velocity(1);
// AND: the reset in velocity should be saved correctly
reset_logging_checker.capturePostResetState();
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1));
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(0));
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(1e-9f));
}
TEST_F(EkfFlowTest, inAirConvergence)
{
// WHEN: simulate being 5m above ground
const float simulated_distance_to_ground = 5.f;
startRangeFinderFusion(simulated_distance_to_ground);
_ekf->set_in_air_status(true);
_sensor_simulator.runSeconds(5.f);
const float estimated_distance_to_ground = _ekf->getTerrainVertPos();
// WHEN: start fusing flow data
Vector2f simulated_horz_velocity(0.5f, -0.2f);
flowSample flow_sample = _sensor_simulator._flow.dataAtRest();
setFlowFromHorizontalVelocityAndDistance(flow_sample, simulated_horz_velocity, estimated_distance_to_ground);
_sensor_simulator._flow.setData(flow_sample);
_ekf_wrapper.enableFlowFusion();
_sensor_simulator.startFlow();
// Let it reset but not fuse more measurements. We actually need to send 2
// samples to get a reset because the first one cannot be used as the gyro
// compensation needs to be accumulated between two samples.
_sensor_simulator.runSeconds(0.14);
// THEN: estimated velocity should match simulated velocity
Vector2f estimated_horz_velocity = Vector2f(_ekf->getVelocity());
EXPECT_TRUE(isEqual(estimated_horz_velocity, simulated_horz_velocity))
<< "estimated vel = " << estimated_horz_velocity(0) << ", "
<< estimated_horz_velocity(1);
// AND: when the velocity changes
simulated_horz_velocity = Vector2f(0.8f, -0.5f);
setFlowFromHorizontalVelocityAndDistance(flow_sample, simulated_horz_velocity, estimated_distance_to_ground);
_sensor_simulator._flow.setData(flow_sample);
_sensor_simulator.runSeconds(5.0);
// THEN: estimated velocity should converge to the simulated velocity
// This takes a bit of time because the data is inconsistent with IMU measurements
estimated_horz_velocity = Vector2f(_ekf->getVelocity());
EXPECT_NEAR(estimated_horz_velocity(0), simulated_horz_velocity(0), 0.05f)
<< "estimated vel = " << estimated_horz_velocity(0);
EXPECT_NEAR(estimated_horz_velocity(1), simulated_horz_velocity(1), 0.05f)
<< estimated_horz_velocity(1);
}
TEST_F(EkfFlowTest, yawMotionCorrectionWithAutopilotGyroData)
{
// WHEN: fusing range finder and optical flow data in air
const float simulated_distance_to_ground = 5.f;
startRangeFinderFusion(simulated_distance_to_ground);
startZeroFlowFusion();
_ekf->set_in_air_status(true);
_sensor_simulator.runSeconds(5.f);
// AND WHEN: there is a pure yaw rotation
const Vector3f body_rate(0.f, 0.f, 3.14159f);
const Vector3f flow_offset(0.15, -0.05f, 0.2f);
_ekf_wrapper.setFlowOffset(flow_offset);
const Vector2f simulated_horz_velocity(body_rate % flow_offset);
flowSample flow_sample = _sensor_simulator._flow.dataAtRest();
setFlowFromHorizontalVelocityAndDistance(flow_sample, simulated_horz_velocity, simulated_distance_to_ground);
// use autopilot gyro data
flow_sample.gyro_xyz.setAll(NAN);
_sensor_simulator._flow.setData(flow_sample);
_sensor_simulator._imu.setGyroData(body_rate);
_sensor_simulator.runSeconds(10.f);
// THEN: the flow due to the yaw rotation and the offsets is canceled
// and the velocity estimate stays 0
const Vector2f estimated_horz_velocity = Vector2f(_ekf->getVelocity());
EXPECT_NEAR(estimated_horz_velocity(0), 0.f, 0.01f)
<< "estimated vel = " << estimated_horz_velocity(0);
EXPECT_NEAR(estimated_horz_velocity(1), 0.f, 0.01f)
<< "estimated vel = " << estimated_horz_velocity(1);
}
TEST_F(EkfFlowTest, yawMotionCorrectionWithFlowGyroData)
{
// WHEN: fusing range finder and optical flow data in air
const float simulated_distance_to_ground = 5.f;
startRangeFinderFusion(simulated_distance_to_ground);
startZeroFlowFusion();
_ekf->set_in_air_status(true);
_sensor_simulator.runSeconds(5.f);
// AND WHEN: there is a pure yaw rotation
const Vector3f body_rate(0.f, 0.f, 3.14159f);
const Vector3f flow_offset(-0.15, 0.05f, 0.2f);
_ekf_wrapper.setFlowOffset(flow_offset);
const Vector2f simulated_horz_velocity(body_rate % flow_offset);
flowSample flow_sample = _sensor_simulator._flow.dataAtRest();
setFlowFromHorizontalVelocityAndDistance(flow_sample, simulated_horz_velocity, simulated_distance_to_ground);
// use flow sensor gyro data
// for clarification of the sign, see definition of flowSample
flow_sample.gyro_xyz = -body_rate * flow_sample.dt;
_sensor_simulator._flow.setData(flow_sample);
_sensor_simulator._imu.setGyroData(body_rate);
_sensor_simulator.runSeconds(10.f);
// THEN: the flow due to the yaw rotation and the offsets is canceled
// and the velocity estimate stays 0
const Vector2f estimated_horz_velocity = Vector2f(_ekf->getVelocity());
EXPECT_NEAR(estimated_horz_velocity(0), 0.f, 0.01f)
<< "estimated vel = " << estimated_horz_velocity(0);
EXPECT_NEAR(estimated_horz_velocity(1), 0.f, 0.01f)
<< "estimated vel = " << estimated_horz_velocity(1);
}