ADIS16448.cpp
16.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ADIS16448.hpp"
using namespace time_literals;
// computes the CCITT CRC16 on the data received from a burst read
static uint16_t ComputeCRC16(uint16_t burstData[13])
{
uint16_t crc = 0xFFFF; // Holds the CRC value
unsigned int data; // Holds the lower/Upper byte for CRC computation
static constexpr unsigned int POLY = 0x1021; // Divisor used during CRC computation
// Compute CRC on burst data starting from XGYRO_OUT and ending with TEMP_OUT.
// Start with the lower byte and then the upper byte of each word.
// i.e. Compute XGYRO_OUT_LSB CRC first and then compute XGYRO_OUT_MSB CRC.
for (int i = 1; i < 12; i++) {
unsigned int upperByte = (burstData[i] >> 8) & 0xFF;
unsigned int lowerByte = (burstData[i] & 0xFF);
data = lowerByte; // Compute lower byte CRC first
for (int ii = 0; ii < 8; ii++, data >>= 1) {
if ((crc & 0x0001) ^ (data & 0x0001)) {
crc = (crc >> 1) ^ POLY;
} else {
crc >>= 1;
}
}
data = upperByte; // Compute upper byte of CRC
for (int ii = 0; ii < 8; ii++, data >>= 1) {
if ((crc & 0x0001) ^ (data & 0x0001)) {
crc = (crc >> 1) ^ POLY;
} else {
crc >>= 1;
}
}
}
crc = ~crc; // Compute complement of CRC
data = crc;
crc = (crc << 8) | (data >> 8 & 0xFF); // Perform byte swap prior to returning CRC
return crc;
}
// convert 12 bit integer format to int16.
static int16_t convert12BitToINT16(uint16_t word)
{
int16_t output = 0;
if ((word >> 11) & 0x1) {
// sign extend
output = (word & 0xFFF) | 0xF000;
} else {
output = (word & 0x0FFF);
}
return output;
}
ADIS16448::ADIS16448(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation, int bus_frequency,
spi_drdy_gpio_t drdy_gpio) :
SPI(DRV_IMU_DEVTYPE_ADIS16448, MODULE_NAME, bus, device, SPIDEV_MODE3, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
_drdy_gpio(drdy_gpio), // TODO: DRDY disabled
_px4_accel(get_device_id(), rotation),
_px4_baro(get_device_id()),
_px4_gyro(get_device_id(), rotation),
_px4_mag(get_device_id(), rotation)
{
}
ADIS16448::~ADIS16448()
{
perf_free(_reset_perf);
perf_free(_perf_crc_bad);
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
}
int ADIS16448::init()
{
int ret = SPI::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("SPI::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool ADIS16448::Reset()
{
_state = STATE::RESET;
DataReadyInterruptDisable();
ScheduleClear();
ScheduleNow();
return true;
}
void ADIS16448::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void ADIS16448::print_status()
{
I2CSPIDriverBase::print_status();
perf_print_counter(_reset_perf);
perf_print_counter(_perf_crc_bad);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
}
int ADIS16448::probe()
{
// Power-On Start-Up Time 205 ms
if (hrt_absolute_time() < 205_ms) {
PX4_WARN("Power-On Start-Up Time is 205 ms");
}
const uint16_t PROD_ID = RegisterRead(Register::PROD_ID);
if (PROD_ID != Product_identification) {
DEVICE_DEBUG("unexpected PROD_ID 0x%02x", PROD_ID);
return PX4_ERROR;
}
const uint16_t SERIAL_NUM = RegisterRead(Register::SERIAL_NUM);
const uint16_t LOT_ID1 = RegisterRead(Register::LOT_ID1);
const uint16_t LOT_ID2 = RegisterRead(Register::LOT_ID2);
PX4_INFO("Serial Number: 0x%02x, Lot ID1: 0x%02x ID2: 0x%02x", SERIAL_NUM, LOT_ID1, LOT_ID2);
// Only enable CRC-16 for verified lots (HACK to support older ADIS16448AMLZ with no explicit detection)
if (LOT_ID1 == 0x1824) {
_check_crc = true;
}
return PX4_OK;
}
void ADIS16448::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::RESET:
perf_count(_reset_perf);
// GLOB_CMD: software reset
RegisterWrite(Register::GLOB_CMD, GLOB_CMD_BIT::Software_reset);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(90_ms); // Reset Recovery Time 90 ms
break;
case STATE::WAIT_FOR_RESET:
if (_self_test_passed) {
if ((RegisterRead(Register::PROD_ID) == Product_identification)) {
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleNow();
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
} else {
RegisterWrite(Register::MSC_CTRL, MSC_CTRL_BIT::Internal_self_test);
_state = STATE::SELF_TEST_CHECK;
ScheduleDelayed(45_ms); // Automatic Self-Test Time 45 ms
}
break;
case STATE::SELF_TEST_CHECK: {
const uint16_t DIAG_STAT = RegisterRead(Register::DIAG_STAT);
if (DIAG_STAT & DIAG_STAT_BIT::Self_test_diagnostic_error_flag) {
PX4_ERR("self test failed");
// Magnetometer
if (DIAG_STAT & DIAG_STAT_BIT::Magnetometer_functional_test) {
// tolerate mag test failure (likely due to surrounding magnetic field)
PX4_ERR("Magnetometer functional test fail");
}
// Barometer
if (DIAG_STAT & DIAG_STAT_BIT::Barometer_functional_test) {
PX4_ERR("Barometer functional test test fail");
}
// Gyroscope
const bool gyro_x_fail = DIAG_STAT & DIAG_STAT_BIT::X_axis_gyroscope_self_test_failure;
const bool gyro_y_fail = DIAG_STAT & DIAG_STAT_BIT::Y_axis_gyroscope_self_test_failure;
const bool gyro_z_fail = DIAG_STAT & DIAG_STAT_BIT::Z_axis_gyroscope_self_test_failure;
if (gyro_x_fail || gyro_y_fail || gyro_z_fail) {
PX4_ERR("gyroscope self-test failure");
}
// Accelerometer
const bool accel_x_fail = DIAG_STAT & DIAG_STAT_BIT::X_axis_accelerometer_self_test_failure;
const bool accel_y_fail = DIAG_STAT & DIAG_STAT_BIT::Y_axis_accelerometer_self_test_failure;
const bool accel_z_fail = DIAG_STAT & DIAG_STAT_BIT::Z_axis_accelerometer_self_test_failure;
if (accel_x_fail || accel_y_fail || accel_z_fail) {
PX4_ERR("accelerometer self-test failure");
}
_self_test_passed = false;
_state = STATE::RESET;
ScheduleDelayed(1000_ms);
} else {
PX4_DEBUG("self test passed");
_self_test_passed = true;
_state = STATE::RESET;
ScheduleNow();
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading
_state = STATE::READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(100_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(SAMPLE_INTERVAL_US, SAMPLE_INTERVAL_US);
}
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::READ: {
if (_data_ready_interrupt_enabled) {
// push backup schedule back
ScheduleDelayed(SAMPLE_INTERVAL_US * 2);
}
bool success = false;
struct BurstRead {
uint16_t cmd;
uint16_t DIAG_STAT;
int16_t XGYRO_OUT;
int16_t YGYRO_OUT;
int16_t ZGYRO_OUT;
int16_t XACCL_OUT;
int16_t YACCL_OUT;
int16_t ZACCL_OUT;
int16_t XMAGN_OUT;
int16_t YMAGN_OUT;
int16_t ZMAGN_OUT;
uint16_t BARO_OUT;
uint16_t TEMP_OUT;
uint16_t CRC16;
} buffer{};
// ADIS16448 burst report should be 224 bits
static_assert(sizeof(BurstRead) == (224 / 8), "ADIS16448 report not 224 bits");
buffer.cmd = static_cast<uint16_t>(Register::GLOB_CMD) << 8;
set_frequency(SPI_SPEED_BURST);
if (transferhword((uint16_t *)&buffer, (uint16_t *)&buffer, sizeof(buffer) / sizeof(uint16_t)) == PX4_OK) {
bool publish_data = true;
// checksum
if (_check_crc) {
if (buffer.CRC16 != ComputeCRC16((uint16_t *)&buffer.DIAG_STAT)) {
perf_count(_perf_crc_bad);
publish_data = false;
}
}
if (buffer.DIAG_STAT == DIAG_STAT_BIT::SPI_communication_failure) {
perf_count(_bad_transfer_perf);
publish_data = false;
}
if (publish_data) {
const uint32_t error_count = perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf);
_px4_accel.set_error_count(error_count);
_px4_gyro.set_error_count(error_count);
// temperature 0.07386°C/LSB, 31°C = 0x000
const float temperature = (convert12BitToINT16(buffer.TEMP_OUT) * 0.07386f) + 31.f;
_px4_accel.set_temperature(temperature);
_px4_gyro.set_temperature(temperature);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
const int16_t accel_x = buffer.XACCL_OUT;
const int16_t accel_y = (buffer.YACCL_OUT == INT16_MIN) ? INT16_MAX : -buffer.YACCL_OUT;
const int16_t accel_z = (buffer.ZACCL_OUT == INT16_MIN) ? INT16_MAX : -buffer.ZACCL_OUT;
const int16_t gyro_x = buffer.XGYRO_OUT;
const int16_t gyro_y = (buffer.YGYRO_OUT == INT16_MIN) ? INT16_MAX : -buffer.YGYRO_OUT;
const int16_t gyro_z = (buffer.ZGYRO_OUT == INT16_MIN) ? INT16_MAX : -buffer.ZGYRO_OUT;
_px4_accel.update(now, accel_x, accel_y, accel_z);
_px4_gyro.update(now, gyro_x, gyro_y, gyro_z);
// DIAG_STAT bit 7: New data, xMAGN_OUT/BARO_OUT
if (buffer.DIAG_STAT & DIAG_STAT_BIT::New_data_xMAGN_OUT_BARO_OUT) {
_px4_mag.set_error_count(error_count);
_px4_mag.set_temperature(temperature);
const int16_t mag_x = buffer.XMAGN_OUT;
const int16_t mag_y = (buffer.YMAGN_OUT == INT16_MIN) ? INT16_MAX : -buffer.YMAGN_OUT;
const int16_t mag_z = (buffer.ZMAGN_OUT == INT16_MIN) ? INT16_MAX : -buffer.ZMAGN_OUT;
_px4_mag.update(now, mag_x, mag_y, mag_z);
_px4_baro.set_error_count(error_count);
_px4_baro.set_temperature(temperature);
float pressure_pa = buffer.BARO_OUT * 0.02f; // 20 μbar per LSB
_px4_baro.update(now, pressure_pa);
}
success = true;
if (_failure_count > 0) {
_failure_count--;
}
}
} else {
perf_count(_bad_transfer_perf);
}
if (!success) {
_failure_count++;
// full reset if things are failing consistently
if (_failure_count > 10) {
Reset();
return;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_cfg[_checked_register])) {
_last_config_check_timestamp = now;
_checked_register = (_checked_register + 1) % size_register_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
}
}
}
break;
}
}
bool ADIS16448::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
_px4_accel.set_scale(0.833f * 1e-3f * CONSTANTS_ONE_G); // 0.833 mg/LSB
_px4_gyro.set_scale(math::radians(0.04f)); // 0.04 °/sec/LSB
_px4_mag.set_scale(142.9f * 1e-6f); // μgauss/LSB
_px4_accel.set_range(18.f * CONSTANTS_ONE_G);
_px4_gyro.set_range(math::radians(1000.f));
_px4_mag.set_external(external());
return success;
}
int ADIS16448::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<ADIS16448 *>(arg)->DataReady();
return 0;
}
void ADIS16448::DataReady()
{
ScheduleNow();
}
bool ADIS16448::DataReadyInterruptConfigure()
{
if (_drdy_gpio == 0) {
return false;
}
// check if DIO1 is connected to data ready
{
// DIO1 output set low
RegisterWrite(Register::GPIO_CTRL, GPIO_CTRL_BIT::GPIO1_DIRECTION);
bool write0_valid = (px4_arch_gpioread(_drdy_gpio) == 1);
// DIO1 output set high
RegisterWrite(Register::GPIO_CTRL, GPIO_CTRL_BIT::GPIO1_DATA_LEVEL | GPIO_CTRL_BIT::GPIO1_DIRECTION);
bool write1_valid = (px4_arch_gpioread(_drdy_gpio) == 0);
// DIO1 output set low again
RegisterWrite(Register::GPIO_CTRL, GPIO_CTRL_BIT::GPIO1_DIRECTION);
bool write2_valid = (px4_arch_gpioread(_drdy_gpio) == 1);
if (write0_valid && write1_valid && write2_valid) {
PX4_INFO("DIO1 DRDY valid");
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
} else {
PX4_DEBUG("DIO1 DRDY invalid");
}
}
// check if DIO2 is connected to data ready
{
// DIO2 output set low
RegisterWrite(Register::GPIO_CTRL, GPIO_CTRL_BIT::GPIO2_DIRECTION);
bool write0_valid = (px4_arch_gpioread(_drdy_gpio) == 1);
// DIO2 output set high
RegisterWrite(Register::GPIO_CTRL, GPIO_CTRL_BIT::GPIO2_DATA_LEVEL | GPIO_CTRL_BIT::GPIO2_DIRECTION);
bool write1_valid = (px4_arch_gpioread(_drdy_gpio) == 0);
// DIO2 output set low again
RegisterWrite(Register::GPIO_CTRL, GPIO_CTRL_BIT::GPIO2_DIRECTION);
bool write2_valid = (px4_arch_gpioread(_drdy_gpio) == 1);
if (write0_valid && write1_valid && write2_valid) {
PX4_INFO("DIO2 DRDY valid");
} else {
PX4_DEBUG("DIO2 DRDY invalid");
}
}
return false;
}
bool ADIS16448::DataReadyInterruptDisable()
{
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}
bool ADIS16448::RegisterCheck(const register_config_t ®_cfg)
{
bool success = true;
const uint16_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
uint16_t ADIS16448::RegisterRead(Register reg)
{
set_frequency(SPI_SPEED);
uint16_t cmd[1];
cmd[0] = (static_cast<uint16_t>(reg) << 8);
transferhword(cmd, nullptr, 1);
px4_udelay(SPI_STALL_PERIOD);
transferhword(nullptr, cmd, 1);
return cmd[0];
}
void ADIS16448::RegisterWrite(Register reg, uint16_t value)
{
set_frequency(SPI_SPEED);
uint16_t cmd[2];
cmd[0] = (((static_cast<uint16_t>(reg)) | DIR_WRITE) << 8) | ((0x00FF & value));
cmd[1] = (((static_cast<uint16_t>(reg) + 1) | DIR_WRITE) << 8) | ((0xFF00 & value) >> 8);
transferhword(cmd, nullptr, 1);
px4_udelay(SPI_STALL_PERIOD);
transferhword(cmd + 1, nullptr, 1);
}
void ADIS16448::RegisterSetAndClearBits(Register reg, uint16_t setbits, uint16_t clearbits)
{
const uint16_t orig_val = RegisterRead(reg);
uint16_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}