gazebo_uuv_plugin.cpp
8.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
* Copyright 2020 Daniel Duecker, TU Hamburg, Germany
* Copyright 2020 Philipp Hastedt, TU Hamburg, Germany
* based on prior work by Nils Rottmann and Austin Buchan
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* This plugin is an extension with regard to hydrodynamic effects.
* It
* - computes the hydrodynamic effects (according to FOSSEN 2011 - Handbook of Marine Craft Hydrodynamics and Motion Control)
* - applies the Hydro effects as forces/moments and are than applied to the vehicle
* - computes the forces/moments based on the motor commands
*/
#include "gazebo_uuv_plugin.h"
#include <ignition/math.hh>
#include <iostream>
#include <iomanip>
namespace gazebo {
GazeboUUVPlugin::~GazeboUUVPlugin() {
updateConnection_->~Connection();
}
void GazeboUUVPlugin::InitializeParams() {}
void GazeboUUVPlugin::Publish() {}
void GazeboUUVPlugin::ParseBuoyancy(sdf::ElementPtr _sdf) {
for (auto buoyancy_element = _sdf->GetFirstElement(); buoyancy_element != NULL; buoyancy_element = buoyancy_element->GetNextElement()) {
// skip element if it is not a buoyancy-element
if (buoyancy_element->GetName() != "buoyancy") {
continue;
}
physics::LinkPtr link_ptr;
std::string link_name = "";
// check if link_name is specified. Otherwise skip this buoyancy-element.
if (!getSdfParam(buoyancy_element, "link_name", link_name, link_name)) {
gzwarn << "Skipping buoyancy element with unspecified 'link_name' tag!\n";
continue;
}
link_ptr = model_->GetChildLink(link_name);
// Check if link with specified name exists. Otherwise skip this
// buoyancy-element.
if (link_ptr == NULL) {
gzerr << "Model has no link with name '" << link_name << "'!\n";
continue;
}
buoyancy_s buoyancy_link;
buoyancy_link.model_name = model_->GetName();
buoyancy_link.link = link_ptr;
buoyancy_link.buoyancy_force = ignition::math::Vector3d(0, 0, 0);
buoyancy_link.cob = ignition::math::Vector3d(0, 0, 0);
buoyancy_link.height_scale_limit = 0.1;
double compensation = 0.0;
if (buoyancy_element->HasElement("origin")) {
buoyancy_link.cob = buoyancy_element->Get<ignition::math::Vector3d>("origin");
}
if (buoyancy_element->HasElement("compensation")) {
compensation = buoyancy_element->Get<double>("compensation");
}
if (buoyancy_element->HasElement("height_scale_limit")) {
buoyancy_link.height_scale_limit = std::abs(buoyancy_element->Get<double>("height_scale_limit"));
}
#if GAZEBO_MAJOR_VERSION >= 9
buoyancy_link.buoyancy_force = -compensation * link_ptr->GetInertial()->Mass() * model_->GetWorld()->Gravity();
#else
buoyancy_link.buoyancy_force = -compensation * link_ptr->GetInertial()->GetMass() * model_->GetWorld()->Gravity();
#endif
buoyancy_links_.push_back(buoyancy_link);
gzmsg << "Added buoyancy element for link '" << model_->GetName() << "::" << link_name << "'.\n";
}
}
void GazeboUUVPlugin::Load(physics::ModelPtr _model, sdf::ElementPtr _sdf) {
model_ = _model;
namespace_.clear();
namespace_ = _sdf->GetElement("robotNamespace")->Get<std::string>();
node_handle_ = transport::NodePtr(new transport::Node());
node_handle_->Init(namespace_);
//Get links
link_base_ = _sdf->GetElement("baseLinkName")->Get<std::string>();
baseLink_ = model_->GetLink(link_base_);
ParseBuoyancy(_sdf);
//Get parameters for added mass and damping
ignition::math::Vector3d added_mass_linear(0,0,0);
getSdfParam<ignition::math::Vector3d>(_sdf, "addedMassLinear", added_mass_linear, added_mass_linear);
X_udot_ = added_mass_linear[0];
Y_vdot_ = added_mass_linear[1];
Z_wdot_ = added_mass_linear[2];
ignition::math::Vector3d added_mass_angular(0,0,0);
getSdfParam<ignition::math::Vector3d>( _sdf, "addedMassAngular", added_mass_angular, added_mass_angular);
K_pdot_ = added_mass_angular[0];
M_qdot_ = added_mass_angular[1];
N_rdot_ = added_mass_angular[2];
ignition::math::Vector3d damping_linear(0,0,0);
getSdfParam<ignition::math::Vector3d>(_sdf, "dampingLinear", damping_linear, damping_linear);
X_u_ = damping_linear[0];
Y_v_ = damping_linear[1];
Z_w_ = damping_linear[2];
ignition::math::Vector3d damping_angular(0,0,0);
getSdfParam<ignition::math::Vector3d>(_sdf, "dampingAngular", damping_angular, damping_angular);
K_p_ = damping_angular[0];
M_q_ = damping_angular[1];
N_r_ = damping_angular[2];
// Listen to the update event. This event is broadcast every
// simulation iteration.
updateConnection_ = event::Events::ConnectWorldUpdateBegin(boost::bind(&GazeboUUVPlugin::OnUpdate, this, _1));
}
// This gets called by the world update start event.
void GazeboUUVPlugin::OnUpdate(const common::UpdateInfo& _info) {
ApplyBuoyancy();
UpdateForcesAndMoments(); // Hydrodynamics are computed here
Publish();
}
void GazeboUUVPlugin::ApplyBuoyancy() {
ignition::math::Vector3d force, cob;
for (std::vector<buoyancy_s>::iterator entry = buoyancy_links_.begin(); entry != buoyancy_links_.end(); ++entry) {
#if GAZEBO_MAJOR_VERSION >= 9
ignition::math::Pose3d pose = entry->link->WorldPose();
#else
ignition::math::Pose3d pose = ignitionFromGazeboMath(entry->link->GetWorldPose());
#endif
cob = pose.Pos() + pose.Rot().RotateVector(entry->cob);
force = entry->buoyancy_force;
// apply linear scaling on buoyancy force if center of buoyancy z-coordinate
// is in range [-height_scale_limit, +height_scale limit].
double scale = std::abs((cob.Z()-entry->height_scale_limit) / (2*entry->height_scale_limit));
if (cob.Z() > entry->height_scale_limit)
scale = 0.0;
scale = ignition::math::clamp(scale, 0.0, 1.0);
force *= scale;
entry->link->AddForceAtWorldPosition(force, cob);
}
}
void GazeboUUVPlugin::UpdateForcesAndMoments() {
/**
* This method:
* - computes the hydrodynamic effects (according to FOSSEN 2011 - Handbook of Marine Craft Hydrodynamics and Motion Control)
* - applies the Hydro effects as forces/moments and are than applied to the vehicle
* - computes the forces/moments based on the motor commands
*/
//Calculate and add hydrodynamic forces
#if GAZEBO_MAJOR_VERSION >= 9
ignition::math::Vector3d linear_velocity = baseLink_->RelativeLinearVel();
ignition::math::Vector3d angular_velocity = baseLink_->RelativeAngularVel();
#else
ignition::math::Vector3d linear_velocity = ignitionFromGazeboMath(baseLink_->GetRelativeLinearVel());
ignition::math::Vector3d angular_velocity = ignitionFromGazeboMath(baseLink_->GetRelativeAngularVel());
#endif
double u = linear_velocity[0];
double v = linear_velocity[1];
double w = linear_velocity[2];
double p = angular_velocity[0];
double q = angular_velocity[1];
double r = angular_velocity[2];
// Linear Damping Matrix, with minus already multiplied
ignition::math::Matrix3d D_FL(
-X_u_, 0, 0,
0, -Y_v_, 0,
0, 0, -Z_w_
);
// Angular Damping Matrix, with minus already multiplied
ignition::math::Matrix3d D_FA(
-K_p_, 0, 0,
0, -M_q_, 0,
0, 0, -N_r_
);
ignition::math::Vector3d damping_force = D_FL*linear_velocity;
ignition::math::Vector3d damping_torque = D_FA*angular_velocity;
// Corriolis Forces and Torques
// upper right and bottom left matrix, with minus already multiplied
ignition::math::Matrix3d C_AD_FA(
0, Z_wdot_ * w, -Y_vdot_ * v,
-Z_wdot_ * w, 0, X_udot_ * u,
Y_vdot_ * v, -X_udot_ * u, 0
);
// Torques from angular velocity, with minus already multiplied
ignition::math::Matrix3d C_AD_TA(
0, N_rdot_ * r, -M_qdot_ * q,
-N_rdot_ * r, 0, K_pdot_ * p,
M_qdot_ * q, -K_pdot_ * p, 0
);
ignition::math::Vector3d coriolis_force = C_AD_FA*angular_velocity;
ignition::math::Vector3d coriolis_torque = (C_AD_FA*linear_velocity) + (C_AD_TA*angular_velocity);
//std::cout << C_AD_FA << "\n";
//std::cout << "Linear:" << coriolis_force << "\n";
//std::cout << "Angular:" << angular_velocity << "\n";
baseLink_->AddRelativeForce(damping_force + coriolis_force);
baseLink_->AddRelativeTorque(damping_torque + coriolis_torque);
}
GZ_REGISTER_MODEL_PLUGIN(GazeboUUVPlugin);
}