Vector.hpp
2.55 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/**
* @file Vector.hpp
*
* Vector class.
*
* @author James Goppert <james.goppert@gmail.com>
*/
#pragma once
#include "math.hpp"
namespace matrix
{
template <typename Type, size_t M, size_t N>
class Matrix;
template<typename Type, size_t M>
class Vector : public Matrix<Type, M, 1>
{
public:
using MatrixM1 = Matrix<Type, M, 1>;
Vector() = default;
Vector(const MatrixM1 & other) :
MatrixM1(other)
{
}
explicit Vector(const Type data_[M]) :
MatrixM1(data_)
{
}
template<size_t P, size_t Q>
Vector(const Slice<Type, M, 1, P, Q>& slice_in) :
Matrix<Type, M, 1>(slice_in)
{
}
template<size_t P, size_t Q, size_t DUMMY = 1>
Vector(const Slice<Type, 1, M, P, Q>& slice_in)
{
Vector &self(*this);
for (size_t i = 0; i<M; i++) {
self(i) = slice_in(0, i);
}
}
inline const Type &operator()(size_t i) const
{
assert(i < M);
const MatrixM1 &v = *this;
return v(i, 0);
}
inline Type &operator()(size_t i)
{
assert(i < M);
MatrixM1 &v = *this;
return v(i, 0);
}
Type dot(const MatrixM1 & b) const {
const Vector &a(*this);
Type r(0);
for (size_t i = 0; i<M; i++) {
r += a(i)*b(i,0);
}
return r;
}
inline Type operator*(const MatrixM1 & b) const {
const Vector &a(*this);
return a.dot(b);
}
inline Vector operator*(Type b) const {
return Vector(MatrixM1::operator*(b));
}
Type norm() const {
const Vector &a(*this);
return Type(matrix::sqrt(a.dot(a)));
}
Type norm_squared() const {
const Vector &a(*this);
return a.dot(a);
}
inline Type length() const {
return norm();
}
inline void normalize() {
(*this) /= norm();
}
Vector unit() const {
return (*this) / norm();
}
Vector unit_or_zero(const Type eps = Type(1e-5)) const {
const Type n = norm();
if (n > eps) {
return (*this) / n;
}
return Vector();
}
inline Vector normalized() const {
return unit();
}
bool longerThan(Type testVal) const {
return norm_squared() > testVal*testVal;
}
Vector sqrt() const {
const Vector &a(*this);
Vector r;
for (size_t i = 0; i<M; i++) {
r(i) = Type(matrix::sqrt(a(i)));
}
return r;
}
};
} // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */