tiltrotor.cpp 16.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/****************************************************************************
 *
 *   Copyright (c) 2015 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file tiltrotor.cpp
 *
 * @author Roman Bapst 		<bapstroman@gmail.com>
 * @author Andreas Antener 	<andreas@uaventure.com>
 *
*/

#include "tiltrotor.h"
#include "vtol_att_control_main.h"

using namespace matrix;
using namespace time_literals;

#define ARSP_YAW_CTRL_DISABLE 7.0f	// airspeed at which we stop controlling yaw during a front transition

Tiltrotor::Tiltrotor(VtolAttitudeControl *attc) :
	VtolType(attc)
{
	_vtol_schedule.flight_mode = vtol_mode::MC_MODE;
	_vtol_schedule.transition_start = 0;

	_mc_roll_weight = 1.0f;
	_mc_pitch_weight = 1.0f;
	_mc_yaw_weight = 1.0f;

	_flag_was_in_trans_mode = false;

	_params_handles_tiltrotor.tilt_mc = param_find("VT_TILT_MC");
	_params_handles_tiltrotor.tilt_transition = param_find("VT_TILT_TRANS");
	_params_handles_tiltrotor.tilt_fw = param_find("VT_TILT_FW");
	_params_handles_tiltrotor.tilt_spinup = param_find("VT_TILT_SPINUP");
	_params_handles_tiltrotor.front_trans_dur_p2 = param_find("VT_TRANS_P2_DUR");
}

void
Tiltrotor::parameters_update()
{
	float v;

	/* vtol tilt mechanism position in mc mode */
	param_get(_params_handles_tiltrotor.tilt_mc, &v);
	_params_tiltrotor.tilt_mc = v;

	/* vtol tilt mechanism position in transition mode */
	param_get(_params_handles_tiltrotor.tilt_transition, &v);
	_params_tiltrotor.tilt_transition = v;

	/* vtol tilt mechanism position in fw mode */
	param_get(_params_handles_tiltrotor.tilt_fw, &v);
	_params_tiltrotor.tilt_fw = v;

	/* vtol tilt mechanism position during motor spinup */
	param_get(_params_handles_tiltrotor.tilt_spinup, &v);
	_params_tiltrotor.tilt_spinup = v;

	/* vtol front transition phase 2 duration */
	param_get(_params_handles_tiltrotor.front_trans_dur_p2, &v);
	_params_tiltrotor.front_trans_dur_p2 = v;
}

void Tiltrotor::update_vtol_state()
{
	/* simple logic using a two way switch to perform transitions.
	 * after flipping the switch the vehicle will start tilting rotors, picking up
	 * forward speed. After the vehicle has picked up enough speed the rotors are tilted
	 * forward completely. For the backtransition the motors simply rotate back.
	*/

	if (_vtol_vehicle_status->vtol_transition_failsafe) {
		// Failsafe event, switch to MC mode immediately
		_vtol_schedule.flight_mode = vtol_mode::MC_MODE;

		//reset failsafe when FW is no longer requested
		if (!_attc->is_fixed_wing_requested()) {
			_vtol_vehicle_status->vtol_transition_failsafe = false;
		}

	} else 	if (!_attc->is_fixed_wing_requested()) {

		// plane is in multicopter mode
		switch (_vtol_schedule.flight_mode) {
		case vtol_mode::MC_MODE:
			break;

		case vtol_mode::FW_MODE:
			_vtol_schedule.flight_mode = vtol_mode::TRANSITION_BACK;
			_vtol_schedule.transition_start = hrt_absolute_time();
			break;

		case vtol_mode::TRANSITION_FRONT_P1:
			// failsafe into multicopter mode
			_vtol_schedule.flight_mode = vtol_mode::MC_MODE;
			break;

		case vtol_mode::TRANSITION_FRONT_P2:
			// failsafe into multicopter mode
			_vtol_schedule.flight_mode = vtol_mode::MC_MODE;
			break;

		case vtol_mode::TRANSITION_BACK:
			const float time_since_trans_start = (float)(hrt_absolute_time() - _vtol_schedule.transition_start) * 1e-6f;
			const float ground_speed = sqrtf(_local_pos->vx * _local_pos->vx + _local_pos->vy * _local_pos->vy);
			const bool ground_speed_below_cruise = _local_pos->v_xy_valid && (ground_speed <= _params->mpc_xy_cruise);

			if (_tilt_control <= _params_tiltrotor.tilt_mc && (time_since_trans_start > _params->back_trans_duration
					|| ground_speed_below_cruise)) {
				_vtol_schedule.flight_mode = vtol_mode::MC_MODE;
			}

			break;
		}

	} else {

		switch (_vtol_schedule.flight_mode) {
		case vtol_mode::MC_MODE:
			// initialise a front transition
			_vtol_schedule.flight_mode = vtol_mode::TRANSITION_FRONT_P1;
			_vtol_schedule.transition_start = hrt_absolute_time();
			break;

		case vtol_mode::FW_MODE:
			break;

		case vtol_mode::TRANSITION_FRONT_P1: {

				float time_since_trans_start = (float)(hrt_absolute_time() - _vtol_schedule.transition_start) * 1e-6f;

				const bool airspeed_triggers_transition = PX4_ISFINITE(_airspeed_validated->calibrated_airspeed_m_s)
						&& !_params->airspeed_disabled;

				bool transition_to_p2 = false;

				if (time_since_trans_start > _params->front_trans_time_min) {
					if (airspeed_triggers_transition) {
						transition_to_p2 = _airspeed_validated->calibrated_airspeed_m_s >= _params->transition_airspeed;

					} else {
						transition_to_p2 = _tilt_control >= _params_tiltrotor.tilt_transition &&
								   time_since_trans_start > _params->front_trans_time_openloop;;
					}
				}

				transition_to_p2 |= can_transition_on_ground();

				if (transition_to_p2) {
					_vtol_schedule.flight_mode = vtol_mode::TRANSITION_FRONT_P2;
					_vtol_schedule.transition_start = hrt_absolute_time();
				}

				break;
			}

		case vtol_mode::TRANSITION_FRONT_P2:

			// if the rotors have been tilted completely we switch to fw mode
			if (_tilt_control >= _params_tiltrotor.tilt_fw) {
				_vtol_schedule.flight_mode = vtol_mode::FW_MODE;
				_tilt_control = _params_tiltrotor.tilt_fw;
			}

			break;

		case vtol_mode::TRANSITION_BACK:
			// failsafe into fixed wing mode
			_vtol_schedule.flight_mode = vtol_mode::FW_MODE;
			break;
		}
	}

	// map tiltrotor specific control phases to simple control modes
	switch (_vtol_schedule.flight_mode) {
	case vtol_mode::MC_MODE:
		_vtol_mode = mode::ROTARY_WING;
		break;

	case vtol_mode::FW_MODE:
		_vtol_mode = mode::FIXED_WING;
		break;

	case vtol_mode::TRANSITION_FRONT_P1:
	case vtol_mode::TRANSITION_FRONT_P2:
		_vtol_mode = mode::TRANSITION_TO_FW;
		break;

	case vtol_mode::TRANSITION_BACK:
		_vtol_mode = mode::TRANSITION_TO_MC;
		break;
	}
}

void Tiltrotor::update_mc_state()
{
	VtolType::update_mc_state();

	/*Motor spin up: define the first second after arming as motor spin up time, during which
	* the tilt is set to the value of VT_TILT_SPINUP. This allowes the user to set a spin up
	* tilt angle in case the propellers don't spin up smootly in full upright (MC mode) position.
	*/

	const int spin_up_duration_p1 = 1000_ms; // duration of 1st phase of spinup (at fixed tilt)
	const int spin_up_duration_p2 = 700_ms; // duration of 2nd phase of spinup (transition from spinup tilt to mc tilt)

	// reset this timestamp while disarmed
	if (!_v_control_mode->flag_armed) {
		_last_timestamp_disarmed = hrt_absolute_time();
		_tilt_motors_for_startup = _params_tiltrotor.tilt_spinup > 0.01f; // spinup phase only required if spinup tilt > 0

	} else if (_tilt_motors_for_startup) {
		// leave motors tilted forward after arming to allow them to spin up easier
		if (hrt_absolute_time() - _last_timestamp_disarmed > (spin_up_duration_p1 + spin_up_duration_p2)) {
			_tilt_motors_for_startup = false;
		}
	}

	if (_tilt_motors_for_startup) {
		if (hrt_absolute_time() - _last_timestamp_disarmed < spin_up_duration_p1) {
			_tilt_control = _params_tiltrotor.tilt_spinup;

		} else {
			// duration phase 2: begin to adapt tilt to multicopter tilt
			float delta_tilt = (_params_tiltrotor.tilt_mc - _params_tiltrotor.tilt_spinup);
			_tilt_control = _params_tiltrotor.tilt_spinup + delta_tilt / spin_up_duration_p2 * (hrt_absolute_time() -
					(_last_timestamp_disarmed + spin_up_duration_p1));
		}

		_mc_yaw_weight = 0.0f; //disable yaw control during spinup

	} else {
		// normal operation
		_tilt_control = VtolType::pusher_assist();
		_mc_yaw_weight = 1.0f;
		_v_att_sp->thrust_body[2] = Tiltrotor::thrust_compensation_for_tilt();
	}

}

void Tiltrotor::update_fw_state()
{
	VtolType::update_fw_state();

	// make sure motors are tilted forward
	_tilt_control = _params_tiltrotor.tilt_fw;
}

void Tiltrotor::update_transition_state()
{
	VtolType::update_transition_state();

	// copy virtual attitude setpoint to real attitude setpoint (we use multicopter att sp)
	memcpy(_v_att_sp, _mc_virtual_att_sp, sizeof(vehicle_attitude_setpoint_s));

	_v_att_sp->roll_body = _fw_virtual_att_sp->roll_body;

	float time_since_trans_start = (float)(hrt_absolute_time() - _vtol_schedule.transition_start) * 1e-6f;

	if (!_flag_was_in_trans_mode) {
		// save desired heading for transition and last thrust value
		_flag_was_in_trans_mode = true;
	}

	if (_vtol_schedule.flight_mode == vtol_mode::TRANSITION_FRONT_P1) {
		// for the first part of the transition all rotors are enabled
		set_all_motor_state(motor_state::ENABLED);

		// tilt rotors forward up to certain angle
		if (_tilt_control <= _params_tiltrotor.tilt_transition) {
			_tilt_control = _params_tiltrotor.tilt_mc +
					fabsf(_params_tiltrotor.tilt_transition - _params_tiltrotor.tilt_mc) * time_since_trans_start /
					_params->front_trans_duration;
		}


		// at low speeds give full weight to MC
		_mc_roll_weight = 1.0f;
		_mc_yaw_weight = 1.0f;

		// reduce MC controls once the plane has picked up speed
		if (!_params->airspeed_disabled && PX4_ISFINITE(_airspeed_validated->calibrated_airspeed_m_s) &&
		    _airspeed_validated->calibrated_airspeed_m_s > ARSP_YAW_CTRL_DISABLE) {
			_mc_yaw_weight = 0.0f;
		}

		if (!_params->airspeed_disabled && PX4_ISFINITE(_airspeed_validated->calibrated_airspeed_m_s) &&
		    _airspeed_validated->calibrated_airspeed_m_s >= _params->airspeed_blend) {
			_mc_roll_weight = 1.0f - (_airspeed_validated->calibrated_airspeed_m_s - _params->airspeed_blend) /
					  (_params->transition_airspeed - _params->airspeed_blend);
		}

		// without airspeed do timed weight changes
		if ((_params->airspeed_disabled || !PX4_ISFINITE(_airspeed_validated->calibrated_airspeed_m_s)) &&
		    time_since_trans_start > _params->front_trans_time_min) {
			_mc_roll_weight = 1.0f - (time_since_trans_start - _params->front_trans_time_min) /
					  (_params->front_trans_time_openloop - _params->front_trans_time_min);
			_mc_yaw_weight = _mc_roll_weight;
		}

		_thrust_transition = -_mc_virtual_att_sp->thrust_body[2];

		// in stabilized, acro or manual mode, set the MC thrust to the throttle stick position (coming from the FW attitude setpoint)
		if (!_v_control_mode->flag_control_climb_rate_enabled) {
			_v_att_sp->thrust_body[2] = -_fw_virtual_att_sp->thrust_body[0];
		}

	} else if (_vtol_schedule.flight_mode == vtol_mode::TRANSITION_FRONT_P2) {
		// the plane is ready to go into fixed wing mode, tilt the rotors forward completely
		_tilt_control = _params_tiltrotor.tilt_transition +
				fabsf(_params_tiltrotor.tilt_fw - _params_tiltrotor.tilt_transition) * time_since_trans_start /
				_params_tiltrotor.front_trans_dur_p2;

		_mc_roll_weight = 0.0f;
		_mc_yaw_weight = 0.0f;

		// ramp down motors not used in fixed-wing flight (setting MAX_PWM down scales the given output into the new range)
		int ramp_down_value = (1.0f - time_since_trans_start / _params_tiltrotor.front_trans_dur_p2) *
				      (PWM_DEFAULT_MAX - PWM_DEFAULT_MIN) + PWM_DEFAULT_MIN;


		set_alternate_motor_state(motor_state::VALUE, ramp_down_value);


		_thrust_transition = -_mc_virtual_att_sp->thrust_body[2];

		// in stabilized, acro or manual mode, set the MC thrust to the throttle stick position (coming from the FW attitude setpoint)
		if (!_v_control_mode->flag_control_climb_rate_enabled) {
			_v_att_sp->thrust_body[2] = -_fw_virtual_att_sp->thrust_body[0];
		}

	} else if (_vtol_schedule.flight_mode == vtol_mode::TRANSITION_BACK) {
		// turn on all MC motors
		set_all_motor_state(motor_state::ENABLED);


		// set idle speed for rotary wing mode
		if (!_flag_idle_mc) {
			_flag_idle_mc = set_idle_mc();
		}

		// tilt rotors back
		if (_tilt_control > _params_tiltrotor.tilt_mc) {
			_tilt_control = _params_tiltrotor.tilt_fw -
					fabsf(_params_tiltrotor.tilt_fw - _params_tiltrotor.tilt_mc) * time_since_trans_start / 1.0f;
		}

		_mc_yaw_weight = 1.0f;

		// control backtransition deceleration using pitch.
		if (_v_control_mode->flag_control_climb_rate_enabled) {
			_v_att_sp->pitch_body = update_and_get_backtransition_pitch_sp();
		}

		// while we quickly rotate back the motors keep throttle at idle
		if (time_since_trans_start < 1.0f) {
			_mc_throttle_weight = 0.0f;
			_mc_roll_weight = 0.0f;
			_mc_pitch_weight = 0.0f;

		} else {
			_mc_roll_weight = 1.0f;
			_mc_pitch_weight = 1.0f;
			// slowly ramp up throttle to avoid step inputs
			_mc_throttle_weight = (time_since_trans_start - 1.0f) / 1.0f;
		}

		// in stabilized, acro or manual mode, set the MC thrust to the throttle stick position (coming from the FW attitude setpoint)
		if (!_v_control_mode->flag_control_climb_rate_enabled) {
			_v_att_sp->thrust_body[2] = -_fw_virtual_att_sp->thrust_body[0];
		}
	}

	const Quatf q_sp(Eulerf(_v_att_sp->roll_body, _v_att_sp->pitch_body, _v_att_sp->yaw_body));
	q_sp.copyTo(_v_att_sp->q_d);

	_mc_roll_weight = math::constrain(_mc_roll_weight, 0.0f, 1.0f);
	_mc_yaw_weight = math::constrain(_mc_yaw_weight, 0.0f, 1.0f);
	_mc_throttle_weight = math::constrain(_mc_throttle_weight, 0.0f, 1.0f);
}

void Tiltrotor::waiting_on_tecs()
{
	// keep multicopter thrust until we get data from TECS
	_v_att_sp->thrust_body[0] = _thrust_transition;
}

/**
* Write data to actuator output topic.
*/
void Tiltrotor::fill_actuator_outputs()
{
	auto &mc_in = _actuators_mc_in->control;
	auto &fw_in = _actuators_fw_in->control;

	auto &mc_out = _actuators_out_0->control;
	auto &fw_out = _actuators_out_1->control;

	// Multirotor output
	mc_out[actuator_controls_s::INDEX_ROLL]  = mc_in[actuator_controls_s::INDEX_ROLL]  * _mc_roll_weight;
	mc_out[actuator_controls_s::INDEX_PITCH] = mc_in[actuator_controls_s::INDEX_PITCH] * _mc_pitch_weight;
	mc_out[actuator_controls_s::INDEX_YAW]   = mc_in[actuator_controls_s::INDEX_YAW]   * _mc_yaw_weight;

	if (_vtol_schedule.flight_mode == vtol_mode::FW_MODE) {
		mc_out[actuator_controls_s::INDEX_THROTTLE] = fw_in[actuator_controls_s::INDEX_THROTTLE];

		/* allow differential thrust if enabled */
		if (_params->diff_thrust == 1) {
			mc_out[actuator_controls_s::INDEX_ROLL] = fw_in[actuator_controls_s::INDEX_YAW] * _params->diff_thrust_scale;
		}

	} else {
		mc_out[actuator_controls_s::INDEX_THROTTLE] = mc_in[actuator_controls_s::INDEX_THROTTLE] * _mc_throttle_weight;
	}

	// Fixed wing output
	fw_out[4] = _tilt_control;

	if (_params->elevons_mc_lock && _vtol_schedule.flight_mode == vtol_mode::MC_MODE) {
		fw_out[actuator_controls_s::INDEX_ROLL]  = 0;
		fw_out[actuator_controls_s::INDEX_PITCH] = 0;
		fw_out[actuator_controls_s::INDEX_YAW]   = 0;

	} else {
		fw_out[actuator_controls_s::INDEX_ROLL]  = fw_in[actuator_controls_s::INDEX_ROLL];
		fw_out[actuator_controls_s::INDEX_PITCH] = fw_in[actuator_controls_s::INDEX_PITCH];
		fw_out[actuator_controls_s::INDEX_YAW]   = fw_in[actuator_controls_s::INDEX_YAW];
	}

	_actuators_out_0->timestamp_sample = _actuators_mc_in->timestamp_sample;
	_actuators_out_1->timestamp_sample = _actuators_fw_in->timestamp_sample;

	_actuators_out_0->timestamp = _actuators_out_1->timestamp = hrt_absolute_time();
}

/*
 * Increase combined thrust of MC propellers if motors are tilted. Assumes that all MC motors are tilted equally.
 */

float Tiltrotor::thrust_compensation_for_tilt()
{
	// only compensate for tilt angle up to 0.5 * max tilt
	float compensated_tilt = math::constrain(_tilt_control, 0.0f, 0.5f);

	// increase vertical thrust by 1/cos(tilt), limmit to [-1,0]
	return math::constrain(_v_att_sp->thrust_body[2] / cosf(compensated_tilt * M_PI_2_F), -1.0f, 0.0f);
}