sih.cpp 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/****************************************************************************
 *
 *   Copyright (c) 2019-2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file sih.cpp
 * Simulator in Hardware
 *
 * @author Romain Chiappinelli      <romain.chiap@gmail.com>
 *
 * Coriolis g Corporation - January 2019
 */

#include "sih.hpp"

#include <px4_platform_common/getopt.h>
#include <px4_platform_common/log.h>

#include <drivers/drv_pwm_output.h>         // to get PWM flags

using namespace math;
using namespace matrix;
using namespace time_literals;

Sih::Sih() :
	ModuleParams(nullptr),
	ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::rate_ctrl)
{
	_px4_accel.set_temperature(T1_C);
	_px4_gyro.set_temperature(T1_C);
	_px4_mag.set_temperature(T1_C);

	parameters_updated();
	init_variables();
	gps_no_fix();

	const hrt_abstime task_start = hrt_absolute_time();
	_last_run = task_start;
	_gps_time = task_start;
	_gt_time = task_start;
	_dist_snsr_time = task_start;
}

Sih::~Sih()
{
	perf_free(_loop_perf);
	perf_free(_loop_interval_perf);
}

bool Sih::init()
{
	int rate = _imu_gyro_ratemax.get();

	// default to 250 Hz (4000 us interval)
	if (rate <= 0) {
		rate = 250;
	}

	// 200 - 2000 Hz
	int interval_us = math::constrain(int(roundf(1e6f / rate)), 500, 5000);
	ScheduleOnInterval(interval_us);

	return true;
}

void Sih::Run()
{
	perf_count(_loop_interval_perf);

	// check for parameter updates
	if (_parameter_update_sub.updated()) {
		// clear update
		parameter_update_s pupdate;
		_parameter_update_sub.copy(&pupdate);

		// update parameters from storage
		updateParams();
		parameters_updated();
	}

	perf_begin(_loop_perf);

	_now = hrt_absolute_time();
	_dt = (_now - _last_run) * 1e-6f;
	_last_run = _now;

	read_motors();

	generate_force_and_torques();

	equations_of_motion();

	reconstruct_sensors_signals();

	// update IMU every iteration
	_px4_accel.update(_now, _acc(0), _acc(1), _acc(2));
	_px4_gyro.update(_now, _gyro(0), _gyro(1), _gyro(2));

	// magnetometer published at 50 Hz
	if (_now - _mag_time >= 20_ms
	    && fabs(_mag_offset_x) < 10000
	    && fabs(_mag_offset_y) < 10000
	    && fabs(_mag_offset_z) < 10000) {
		_mag_time = _now;
		_px4_mag.update(_now, _mag(0), _mag(1), _mag(2));
	}

	// baro published at 20 Hz
	if (_now - _baro_time >= 50_ms
	    && fabs(_baro_offset_m) < 10000) {
		_baro_time = _now;
		_px4_baro.set_temperature(_baro_temp_c);
		_px4_baro.update(_now, _baro_p_mBar);
	}

	// gps published at 20Hz
	if (_now - _gps_time >= 50_ms) {
		_gps_time = _now;
		send_gps();
	}

	// distance sensor published at 50 Hz
	if (_now - _dist_snsr_time >= 20_ms
	    && fabs(_distance_snsr_override) < 10000) {
		_dist_snsr_time = _now;
		send_dist_snsr();
	}

	// send groundtruth message every 40 ms
	if (_now - _gt_time >= 40_ms) {
		_gt_time = _now;

		publish_sih();  // publish _sih message for debug purpose
	}

	perf_end(_loop_perf);
}

// store the parameters in a more convenient form
void Sih::parameters_updated()
{
	_T_MAX = _sih_t_max.get();
	_Q_MAX = _sih_q_max.get();
	_L_ROLL = _sih_l_roll.get();
	_L_PITCH = _sih_l_pitch.get();
	_KDV = _sih_kdv.get();
	_KDW = _sih_kdw.get();
	_H0 = _sih_h0.get();

	_LAT0 = (double)_sih_lat0.get() * 1.0e-7;
	_LON0 = (double)_sih_lon0.get() * 1.0e-7;
	_COS_LAT0 = cosl((long double)radians(_LAT0));

	_MASS = _sih_mass.get();

	_W_I = Vector3f(0.0f, 0.0f, _MASS * CONSTANTS_ONE_G);

	_I = diag(Vector3f(_sih_ixx.get(), _sih_iyy.get(), _sih_izz.get()));
	_I(0, 1) = _I(1, 0) = _sih_ixy.get();
	_I(0, 2) = _I(2, 0) = _sih_ixz.get();
	_I(1, 2) = _I(2, 1) = _sih_iyz.get();

	_Im1 = inv(_I);

	_mu_I = Vector3f(_sih_mu_x.get(), _sih_mu_y.get(), _sih_mu_z.get());

	_gps_used = _sih_gps_used.get();
	_baro_offset_m = _sih_baro_offset.get();
	_mag_offset_x = _sih_mag_offset_x.get();
	_mag_offset_y = _sih_mag_offset_y.get();
	_mag_offset_z = _sih_mag_offset_z.get();

	_distance_snsr_min = _sih_distance_snsr_min.get();
	_distance_snsr_max = _sih_distance_snsr_max.get();
	_distance_snsr_override = _sih_distance_snsr_override.get();

	_T_TAU = _sih_thrust_tau.get();
}

// initialization of the variables for the simulator
void Sih::init_variables()
{
	srand(1234);    // initialize the random seed once before calling generate_wgn()

	_p_I = Vector3f(0.0f, 0.0f, 0.0f);
	_v_I = Vector3f(0.0f, 0.0f, 0.0f);
	_q = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
	_w_B = Vector3f(0.0f, 0.0f, 0.0f);

	_u[0] = _u[1] = _u[2] = _u[3] = 0.0f;
}

void Sih::gps_fix()
{
	_sensor_gps.fix_type = 3;  // 3D fix
	_sensor_gps.satellites_used = _gps_used;
	_sensor_gps.heading = NAN;
	_sensor_gps.heading_offset = NAN;
	_sensor_gps.s_variance_m_s = 0.5f;
	_sensor_gps.c_variance_rad = 0.1f;
	_sensor_gps.eph = 0.9f;
	_sensor_gps.epv = 1.78f;
	_sensor_gps.hdop = 0.7f;
	_sensor_gps.vdop = 1.1f;
}

void Sih::gps_no_fix()
{
	_sensor_gps.fix_type = 0;  // 3D fix
	_sensor_gps.satellites_used = _gps_used;
	_sensor_gps.heading = NAN;
	_sensor_gps.heading_offset = NAN;
	_sensor_gps.s_variance_m_s = 100.f;
	_sensor_gps.c_variance_rad = 100.f;
	_sensor_gps.eph = 100.f;
	_sensor_gps.epv = 100.f;
	_sensor_gps.hdop = 100.f;
	_sensor_gps.vdop = 100.f;
}


// read the motor signals outputted from the mixer
void Sih::read_motors()
{
	actuator_outputs_s actuators_out;

	if (_actuator_out_sub.update(&actuators_out)) {
		for (int i = 0; i < NB_MOTORS; i++) { // saturate the motor signals
			float u_sp = constrain((actuators_out.output[i] - PWM_DEFAULT_MIN) / (PWM_DEFAULT_MAX - PWM_DEFAULT_MIN), 0.0f, 1.0f);
			_u[i] = _u[i] + _dt / _T_TAU * (u_sp - _u[i]); // first order transfer function with time constant tau
		}
	}
}

// generate the motors thrust and torque in the body frame
void Sih::generate_force_and_torques()
{
	_T_B = Vector3f(0.0f, 0.0f, -_T_MAX * (+_u[0] + _u[1] + _u[2] + _u[3]));
	_Mt_B = Vector3f(_L_ROLL * _T_MAX * (-_u[0] + _u[1] + _u[2] - _u[3]),
			 _L_PITCH * _T_MAX * (+_u[0] - _u[1] + _u[2] - _u[3]),
			 _Q_MAX * (+_u[0] + _u[1] - _u[2] - _u[3]));

	_Fa_I = -_KDV * _v_I;   // first order drag to slow down the aircraft
	_Ma_B = -_KDW * _w_B;   // first order angular damper
}

// apply the equations of motion of a rigid body and integrate one step
void Sih::equations_of_motion()
{
	_C_IB = matrix::Dcm<float>(_q); // body to inertial transformation

	// Equations of motion of a rigid body
	_p_I_dot = _v_I;                        // position differential
	_v_I_dot = (_W_I + _Fa_I + _C_IB * _T_B) / _MASS;   // conservation of linear momentum
	_q_dot = _q.derivative1(_w_B);              // attitude differential
	_w_B_dot = _Im1 * (_Mt_B + _Ma_B - _w_B.cross(_I * _w_B)); // conservation of angular momentum

	// fake ground, avoid free fall
	if (_p_I(2) > 0.0f && (_v_I_dot(2) > 0.0f || _v_I(2) > 0.0f)) {
		if (!_grounded) {    // if we just hit the floor
			// for the accelerometer, compute the acceleration that will stop the vehicle in one time step
			_v_I_dot = -_v_I / _dt;

		} else {
			_v_I_dot.setZero();
		}

		_v_I.setZero();
		_w_B.setZero();
		_grounded = true;

	} else {
		// integration: Euler forward
		_p_I = _p_I + _p_I_dot * _dt;
		_v_I = _v_I + _v_I_dot * _dt;
		_q = _q + _q_dot * _dt; // as given in attitude_estimator_q_main.cpp
		_q.normalize();
		_w_B = _w_B + _w_B_dot * _dt;
		_grounded = false;
	}
}

// reconstruct the noisy sensor signals
void Sih::reconstruct_sensors_signals()
{
	// The sensor signals reconstruction and noise levels are from
	// Bulka, Eitan, and Meyer Nahon. "Autonomous fixed-wing aerobatics: from theory to flight."
	// In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6573-6580. IEEE, 2018.

	// IMU
	_acc = _C_IB.transpose() * (_v_I_dot - Vector3f(0.0f, 0.0f, CONSTANTS_ONE_G)) + noiseGauss3f(0.5f, 1.7f, 1.4f);
	_gyro = _w_B + noiseGauss3f(0.14f, 0.07f, 0.03f);
	_mag = _C_IB.transpose() * _mu_I + noiseGauss3f(0.02f, 0.02f, 0.03f);
	_mag(0) += _mag_offset_x;
	_mag(1) += _mag_offset_y;
	_mag(2) += _mag_offset_z;

	// barometer
	float altitude = (_H0 - _p_I(2)) + _baro_offset_m + generate_wgn() * 0.14f; // altitude with noise
	_baro_p_mBar = CONSTANTS_STD_PRESSURE_MBAR *        // reconstructed pressure in mBar
		       powf((1.0f + altitude * TEMP_GRADIENT / T1_K), -CONSTANTS_ONE_G / (TEMP_GRADIENT * CONSTANTS_AIR_GAS_CONST));
	_baro_temp_c = T1_K + CONSTANTS_ABSOLUTE_NULL_CELSIUS + TEMP_GRADIENT * altitude; // reconstructed temperture in celcius

	// GPS
	_gps_lat_noiseless = _LAT0 + degrees((double)_p_I(0) / CONSTANTS_RADIUS_OF_EARTH);
	_gps_lon_noiseless = _LON0 + degrees((double)_p_I(1) / CONSTANTS_RADIUS_OF_EARTH) / _COS_LAT0;
	_gps_alt_noiseless = _H0 - _p_I(2);

	_gps_lat = _gps_lat_noiseless + degrees((double)generate_wgn() * 0.2 / CONSTANTS_RADIUS_OF_EARTH);
	_gps_lon = _gps_lon_noiseless + degrees((double)generate_wgn() * 0.2 / CONSTANTS_RADIUS_OF_EARTH) / _COS_LAT0;
	_gps_alt = _gps_alt_noiseless + generate_wgn() * 0.5f;
	_gps_vel = _v_I + noiseGauss3f(0.06f, 0.077f, 0.158f);
}

void Sih::send_gps()
{
	_sensor_gps.timestamp = _now;
	_sensor_gps.lat = (int32_t)(_gps_lat * 1e7);       // Latitude in 1E-7 degrees
	_sensor_gps.lon = (int32_t)(_gps_lon * 1e7); // Longitude in 1E-7 degrees
	_sensor_gps.alt = (int32_t)(_gps_alt * 1000.0f); // Altitude in 1E-3 meters above MSL, (millimetres)
	_sensor_gps.alt_ellipsoid = (int32_t)(_gps_alt * 1000); // Altitude in 1E-3 meters bove Ellipsoid, (millimetres)
	_sensor_gps.vel_ned_valid = true;              // True if NED velocity is valid
	_sensor_gps.vel_m_s = sqrtf(_gps_vel(0) * _gps_vel(0) + _gps_vel(1) * _gps_vel(
					    1)); // GPS ground speed, (metres/sec)
	_sensor_gps.vel_n_m_s = _gps_vel(0);           // GPS North velocity, (metres/sec)
	_sensor_gps.vel_e_m_s = _gps_vel(1);           // GPS East velocity, (metres/sec)
	_sensor_gps.vel_d_m_s = _gps_vel(2);           // GPS Down velocity, (metres/sec)
	_sensor_gps.cog_rad = atan2(_gps_vel(1),
				    _gps_vel(0)); // Course over ground (NOT heading, but direction of movement), -PI..PI, (radians)

	if (_gps_used >= 4) {
		gps_fix();

	} else {
		gps_no_fix();
	}

	_sensor_gps_pub.publish(_sensor_gps);
}

void Sih::send_dist_snsr()
{
	_distance_snsr.timestamp = _now;
	_distance_snsr.type = distance_sensor_s::MAV_DISTANCE_SENSOR_LASER;
	_distance_snsr.orientation = distance_sensor_s::ROTATION_DOWNWARD_FACING;
	_distance_snsr.min_distance = _distance_snsr_min;
	_distance_snsr.max_distance = _distance_snsr_max;
	_distance_snsr.signal_quality = -1;
	_distance_snsr.device_id = 0;

	if (_distance_snsr_override >= 0.f) {
		_distance_snsr.current_distance = _distance_snsr_override;

	} else {
		_distance_snsr.current_distance = -_p_I(2) / _C_IB(2, 2);

		if (_distance_snsr.current_distance > _distance_snsr_max) {
			// this is based on lightware lw20 behaviour
			_distance_snsr.current_distance = UINT16_MAX / 100.f;

		}
	}

	_distance_snsr_pub.publish(_distance_snsr);
}

void Sih::publish_sih()
{
	// publish angular velocity groundtruth
	_vehicle_angular_velocity_gt.timestamp = hrt_absolute_time();
	_vehicle_angular_velocity_gt.xyz[0] = _w_B(0); // rollspeed;
	_vehicle_angular_velocity_gt.xyz[1] = _w_B(1); // pitchspeed;
	_vehicle_angular_velocity_gt.xyz[2] = _w_B(2); // yawspeed;

	_vehicle_angular_velocity_gt_pub.publish(_vehicle_angular_velocity_gt);

	// publish attitude groundtruth
	_att_gt.timestamp = hrt_absolute_time();
	_att_gt.q[0] = _q(0);
	_att_gt.q[1] = _q(1);
	_att_gt.q[2] = _q(2);
	_att_gt.q[3] = _q(3);

	_att_gt_pub.publish(_att_gt);

	// publish position groundtruth
	_gpos_gt.timestamp = hrt_absolute_time();
	_gpos_gt.lat = _gps_lat_noiseless;
	_gpos_gt.lon = _gps_lon_noiseless;
	_gpos_gt.alt = _gps_alt_noiseless;

	_gpos_gt_pub.publish(_gpos_gt);
}

float Sih::generate_wgn()   // generate white Gaussian noise sample with std=1
{
	// algorithm 1:
	// float temp=((float)(rand()+1))/(((float)RAND_MAX+1.0f));
	// return sqrtf(-2.0f*logf(temp))*cosf(2.0f*M_PI_F*rand()/RAND_MAX);
	// algorithm 2: from BlockRandGauss.hpp
	static float V1, V2, S;
	static bool phase = true;
	float X;

	if (phase) {
		do {
			float U1 = (float)rand() / RAND_MAX;
			float U2 = (float)rand() / RAND_MAX;
			V1 = 2.0f * U1 - 1.0f;
			V2 = 2.0f * U2 - 1.0f;
			S = V1 * V1 + V2 * V2;
		} while (S >= 1.0f || fabsf(S) < 1e-8f);

		X = V1 * float(sqrtf(-2.0f * float(logf(S)) / S));

	} else {
		X = V2 * float(sqrtf(-2.0f * float(logf(S)) / S));
	}

	phase = !phase;
	return X;
}

// generate white Gaussian noise sample vector with specified std
Vector3f Sih::noiseGauss3f(float stdx, float stdy, float stdz)
{
	return Vector3f(generate_wgn() * stdx, generate_wgn() * stdy, generate_wgn() * stdz);
}

int Sih::task_spawn(int argc, char *argv[])
{
	Sih *instance = new Sih();

	if (instance) {
		_object.store(instance);
		_task_id = task_id_is_work_queue;

		if (instance->init()) {
			return PX4_OK;
		}

	} else {
		PX4_ERR("alloc failed");
	}

	delete instance;
	_object.store(nullptr);
	_task_id = -1;

	return PX4_ERROR;
}

int Sih::custom_command(int argc, char *argv[])
{
	return print_usage("unknown command");
}

int Sih::print_usage(const char *reason)
{
	if (reason) {
		PX4_WARN("%s\n", reason);
	}

	PRINT_MODULE_DESCRIPTION(
		R"DESCR_STR(
### Description
This module provide a simulator for quadrotors running fully
inside the hardware autopilot.

This simulator subscribes to "actuator_outputs" which are the actuator pwm
signals given by the mixer.

This simulator publishes the sensors signals corrupted with realistic noise
in order to incorporate the state estimator in the loop.

### Implementation
The simulator implements the equations of motion using matrix algebra.
Quaternion representation is used for the attitude.
Forward Euler is used for integration.
Most of the variables are declared global in the .hpp file to avoid stack overflow.


)DESCR_STR");

    PRINT_MODULE_USAGE_NAME("sih", "simulation");
    PRINT_MODULE_USAGE_COMMAND("start");
    PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

    return 0;
}

extern "C" __EXPORT int sih_main(int argc, char *argv[])
{
	return Sih::main(argc, argv);
}