VehicleMagnetometer.cpp
17.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "VehicleMagnetometer.hpp"
#include <px4_platform_common/log.h>
#include <lib/ecl/geo/geo.h>
namespace sensors
{
using namespace matrix;
static constexpr uint32_t SENSOR_TIMEOUT{300_ms};
VehicleMagnetometer::VehicleMagnetometer() :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers)
{
param_find("CAL_MAG_SIDES");
param_find("CAL_MAG_ROT_AUTO");
_voter.set_timeout(SENSOR_TIMEOUT);
_voter.set_equal_value_threshold(1000);
ParametersUpdate(true);
}
VehicleMagnetometer::~VehicleMagnetometer()
{
Stop();
perf_free(_cycle_perf);
}
bool VehicleMagnetometer::Start()
{
ScheduleNow();
return true;
}
void VehicleMagnetometer::Stop()
{
Deinit();
// clear all registered callbacks
for (auto &sub : _sensor_sub) {
sub.unregisterCallback();
}
}
void VehicleMagnetometer::ParametersUpdate(bool force)
{
// Check if parameters have changed
if (_parameter_update_sub.updated() || force) {
// clear update
parameter_update_s param_update;
_parameter_update_sub.copy(¶m_update);
updateParams();
// Mag compensation type
MagCompensationType mag_comp_typ = static_cast<MagCompensationType>(_param_mag_comp_typ.get());
if (mag_comp_typ != _mag_comp_type) {
// check mag power compensation type (change battery current subscription instance if necessary)
if (mag_comp_typ == MagCompensationType::Current_inst0 && _mag_comp_type != MagCompensationType::Current_inst0) {
_battery_status_sub = uORB::Subscription{ORB_ID(battery_status), 0};
}
if (mag_comp_typ == MagCompensationType::Current_inst1 && _mag_comp_type != MagCompensationType::Current_inst1) {
_battery_status_sub = uORB::Subscription{ORB_ID(battery_status), 1};
}
if (mag_comp_typ == MagCompensationType::Throttle) {
_actuator_controls_0_sub = uORB::Subscription{ORB_ID(actuator_controls_0)};
}
}
_mag_comp_type = mag_comp_typ;
// update mag priority (CAL_MAGx_PRIO)
for (int mag = 0; mag < MAX_SENSOR_COUNT; mag++) {
const int32_t priority_old = _calibration[mag].priority();
_calibration[mag].ParametersUpdate();
const int32_t priority_new = _calibration[mag].priority();
if (priority_old != priority_new) {
if (_priority[mag] == priority_old) {
_priority[mag] = priority_new;
} else {
// change relative priority to incorporate any sensor faults
int priority_change = priority_new - priority_old;
_priority[mag] = math::constrain(_priority[mag] + priority_change, 1, 100);
}
}
}
}
}
void VehicleMagnetometer::MagCalibrationUpdate()
{
// State variance assumed for magnetometer bias storage.
// This is a reference variance used to calculate the fraction of learned magnetometer bias that will be used to update the stored value.
// Larger values cause a larger fraction of the learned biases to be used.
static constexpr float magb_vref = 2.5e-7f;
static constexpr float min_var_allowed = magb_vref * 0.01f;
static constexpr float max_var_allowed = magb_vref * 100.f;
if (_armed) {
static constexpr uint8_t mag_cal_size = sizeof(_mag_cal) / sizeof(_mag_cal[0]);
for (int i = 0; i < math::min(_estimator_sensor_bias_subs.size(), mag_cal_size); i++) {
estimator_sensor_bias_s estimator_sensor_bias;
if (_estimator_sensor_bias_subs[i].update(&estimator_sensor_bias)) {
const Vector3f bias{estimator_sensor_bias.mag_bias};
const Vector3f bias_variance{estimator_sensor_bias.mag_bias_variance};
const bool valid = (hrt_elapsed_time(&estimator_sensor_bias.timestamp) < 1_s)
&& (estimator_sensor_bias.mag_device_id != 0) && estimator_sensor_bias.mag_bias_valid
&& (bias_variance.min() > min_var_allowed) && (bias_variance.max() < max_var_allowed);
if (valid) {
// find corresponding mag calibration
for (int mag_index = 0; mag_index < MAX_SENSOR_COUNT; mag_index++) {
if (_calibration[mag_index].device_id() == estimator_sensor_bias.mag_device_id) {
const auto old_offset = _mag_cal[i].mag_offset;
_mag_cal[i].device_id = estimator_sensor_bias.mag_device_id;
_mag_cal[i].mag_offset = _calibration[mag_index].BiasCorrectedSensorOffset(bias);
_mag_cal[i].mag_bias_variance = bias_variance;
_mag_cal_available = true;
if ((old_offset - _mag_cal[i].mag_offset).longerThan(0.01f)) {
PX4_DEBUG("Mag %d (%d) est. offset saved: [% 05.3f % 05.3f % 05.3f] (bias [% 05.3f % 05.3f % 05.3f])",
mag_index, _mag_cal[i].device_id,
(double)_mag_cal[i].mag_offset(0), (double)_mag_cal[i].mag_offset(1), (double)_mag_cal[i].mag_offset(2),
(double)bias(0), (double)bias(1), (double)bias(2));
}
break;
}
}
}
}
}
} else if (_mag_cal_available) {
// not armed and mag cal available
bool calibration_param_save_needed = false;
// iterate through available bias estimates and fuse them sequentially using a Kalman Filter scheme
Vector3f state_variance{magb_vref, magb_vref, magb_vref};
for (int mag_index = 0; mag_index < MAX_SENSOR_COUNT; mag_index++) {
// apply all valid saved offsets
for (int i = 0; i < ORB_MULTI_MAX_INSTANCES; i++) {
if ((_calibration[mag_index].device_id() != 0) && (_mag_cal[i].device_id == _calibration[mag_index].device_id())) {
const Vector3f mag_cal_orig{_calibration[mag_index].offset()};
Vector3f mag_cal_offset{_calibration[mag_index].offset()};
// calculate weighting using ratio of variances and update stored bias values
const Vector3f &observation = _mag_cal[i].mag_offset;
const Vector3f &obs_variance = _mag_cal[i].mag_bias_variance;
for (int axis_index = 0; axis_index < 3; axis_index++) {
const float innovation_variance = state_variance(axis_index) + obs_variance(axis_index);
const float innovation = mag_cal_offset(axis_index) - observation(axis_index);
const float kalman_gain = state_variance(axis_index) / innovation_variance;
mag_cal_offset(axis_index) -= innovation * kalman_gain;
state_variance(axis_index) = fmaxf(state_variance(axis_index) * (1.f - kalman_gain), 0.f);
}
if (_calibration[mag_index].set_offset(mag_cal_offset)) {
PX4_INFO("%d (%d) EST:%d offset committed: [%.2f %.2f %.2f]->[%.2f %.2f %.2f] (full [%.2f %.2f %.2f])",
mag_index, _calibration[mag_index].device_id(), i,
(double)mag_cal_orig(0), (double)mag_cal_orig(1), (double)mag_cal_orig(2),
(double)mag_cal_offset(0), (double)mag_cal_offset(1), (double)mag_cal_offset(2),
(double)_mag_cal[i].mag_offset(0), (double)_mag_cal[i].mag_offset(1), (double)_mag_cal[i].mag_offset(2));
calibration_param_save_needed = true;
}
// clear
_mag_cal[i].device_id = 0;
_mag_cal[i].mag_offset.zero();
_mag_cal[i].mag_bias_variance.zero();
}
}
}
if (calibration_param_save_needed) {
for (int mag_index = 0; mag_index < MAX_SENSOR_COUNT; mag_index++) {
if (_calibration[mag_index].device_id() != 0) {
_calibration[mag_index].ParametersSave();
}
}
_mag_cal_available = false;
}
}
}
void VehicleMagnetometer::Run()
{
perf_begin(_cycle_perf);
ParametersUpdate();
// check vehicle status for changes to armed state
if (_vehicle_control_mode_sub.updated()) {
vehicle_control_mode_s vehicle_control_mode;
if (_vehicle_control_mode_sub.copy(&vehicle_control_mode)) {
_armed = vehicle_control_mode.flag_armed;
}
}
if (_mag_comp_type != MagCompensationType::Disabled) {
// update power signal for mag compensation
if (_armed) {
if (_mag_comp_type == MagCompensationType::Throttle) {
actuator_controls_s controls;
if (_actuator_controls_0_sub.update(&controls)) {
for (auto &cal : _calibration) {
cal.UpdatePower(controls.control[actuator_controls_s::INDEX_THROTTLE]);
}
}
} else if (_mag_comp_type == MagCompensationType::Current_inst0
|| _mag_comp_type == MagCompensationType::Current_inst1) {
battery_status_s bat_stat;
if (_battery_status_sub.update(&bat_stat)) {
float power = bat_stat.current_a * 0.001f; //current in [kA]
for (auto &cal : _calibration) {
cal.UpdatePower(power);
}
}
}
} else {
for (auto &cal : _calibration) {
cal.UpdatePower(0.f);
}
}
}
bool updated[MAX_SENSOR_COUNT] {};
for (int uorb_index = 0; uorb_index < MAX_SENSOR_COUNT; uorb_index++) {
if (!_calibration[uorb_index].enabled()) {
continue;
}
if (!_advertised[uorb_index]) {
// use data's timestamp to throttle advertisement checks
if ((_last_data[uorb_index].timestamp == 0) || (hrt_elapsed_time(&_last_data[uorb_index].timestamp) > 1_s)) {
if (_sensor_sub[uorb_index].advertised()) {
if (uorb_index > 0) {
/* the first always exists, but for each further sensor, add a new validator */
if (!_voter.add_new_validator()) {
PX4_ERR("failed to add validator for %s %i", "MAG", uorb_index);
}
}
_advertised[uorb_index] = true;
// advertise outputs in order if publishing all
if (!_param_sens_mag_mode.get()) {
for (int instance = 0; instance < uorb_index; instance++) {
_vehicle_magnetometer_pub[instance].advertise();
}
}
if (_selected_sensor_sub_index < 0) {
_sensor_sub[uorb_index].registerCallback();
}
} else {
_last_data[uorb_index].timestamp = hrt_absolute_time();
}
}
}
if (_advertised[uorb_index]) {
sensor_mag_s report;
while (_sensor_sub[uorb_index].update(&report)) {
updated[uorb_index] = true;
if (_calibration[uorb_index].device_id() != report.device_id) {
_calibration[uorb_index].set_device_id(report.device_id, report.is_external);
_priority[uorb_index] = _calibration[uorb_index].priority();
}
if (_calibration[uorb_index].enabled()) {
const Vector3f vect = _calibration[uorb_index].Correct(Vector3f{report.x, report.y, report.z});
float mag_array[3] {vect(0), vect(1), vect(2)};
_voter.put(uorb_index, report.timestamp, mag_array, report.error_count, _priority[uorb_index]);
_timestamp_sample_sum[uorb_index] += report.timestamp_sample;
_mag_sum[uorb_index] += vect;
_mag_sum_count[uorb_index]++;
_last_data[uorb_index].timestamp_sample = report.timestamp_sample;
_last_data[uorb_index].device_id = report.device_id;
_last_data[uorb_index].x = vect(0);
_last_data[uorb_index].y = vect(1);
_last_data[uorb_index].z = vect(2);
}
}
}
}
// check for the current best sensor
int best_index = 0;
_voter.get_best(hrt_absolute_time(), &best_index);
if (best_index >= 0) {
if (_selected_sensor_sub_index != best_index) {
// clear all registered callbacks
for (auto &sub : _sensor_sub) {
sub.unregisterCallback();
}
if (_param_sens_mag_mode.get()) {
if (_selected_sensor_sub_index >= 0) {
PX4_INFO("%s switch from #%u -> #%d", "MAG", _selected_sensor_sub_index, best_index);
}
}
_selected_sensor_sub_index = best_index;
_sensor_sub[_selected_sensor_sub_index].registerCallback();
}
}
// Publish
if (_param_sens_mag_mode.get()) {
// publish only best mag
if ((_selected_sensor_sub_index >= 0)
&& (_voter.get_sensor_state(_selected_sensor_sub_index) == DataValidator::ERROR_FLAG_NO_ERROR)
&& updated[_selected_sensor_sub_index]) {
Publish(_selected_sensor_sub_index);
}
} else {
// publish all
for (int uorb_index = 0; uorb_index < MAX_SENSOR_COUNT; uorb_index++) {
// publish all magnetometers as separate instances
if (updated[uorb_index] && (_calibration[uorb_index].device_id() != 0)) {
Publish(uorb_index, true);
}
}
}
// check failover and report
if (_param_sens_mag_mode.get()) {
if (_last_failover_count != _voter.failover_count()) {
uint32_t flags = _voter.failover_state();
int failover_index = _voter.failover_index();
if (flags != DataValidator::ERROR_FLAG_NO_ERROR) {
if (failover_index != -1) {
const hrt_abstime now = hrt_absolute_time();
if (now - _last_error_message > 3_s) {
mavlink_log_emergency(&_mavlink_log_pub, "%s #%i failed: %s%s%s%s%s!",
"MAG",
failover_index,
((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " OFF" : ""),
((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " STALE" : ""),
((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " TIMEOUT" : ""),
((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " ERR CNT" : ""),
((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " ERR DNST" : ""));
_last_error_message = now;
}
// reduce priority of failed sensor to the minimum
_priority[failover_index] = 1;
}
}
_last_failover_count = _voter.failover_count();
}
}
if (!_armed) {
calcMagInconsistency();
}
MagCalibrationUpdate();
// reschedule timeout
ScheduleDelayed(20_ms);
perf_end(_cycle_perf);
}
void VehicleMagnetometer::Publish(uint8_t instance, bool multi)
{
if ((_param_sens_mag_rate.get() > 0) && ((_last_publication_timestamp[instance] == 0) ||
(hrt_elapsed_time(&_last_publication_timestamp[instance]) >= (1e6f / _param_sens_mag_rate.get())))) {
const Vector3f magnetometer_data = _mag_sum[instance] / _mag_sum_count[instance];
const hrt_abstime timestamp_sample = _timestamp_sample_sum[instance] / _mag_sum_count[instance];
// reset
_timestamp_sample_sum[instance] = 0;
_mag_sum[instance].zero();
_mag_sum_count[instance] = 0;
// populate vehicle_magnetometer with primary mag and publish
vehicle_magnetometer_s out{};
out.timestamp_sample = timestamp_sample;
out.device_id = _calibration[instance].device_id();
magnetometer_data.copyTo(out.magnetometer_ga);
out.calibration_count = _calibration[instance].calibration_count();
out.timestamp = hrt_absolute_time();
if (multi) {
_vehicle_magnetometer_pub[instance].publish(out);
} else {
// otherwise only ever publish the first instance
_vehicle_magnetometer_pub[0].publish(out);
}
_last_publication_timestamp[instance] = out.timestamp;
}
}
void VehicleMagnetometer::calcMagInconsistency()
{
sensor_preflight_mag_s preflt{};
const sensor_mag_s &primary_mag_report = _last_data[_selected_sensor_sub_index];
const Vector3f primary_mag(primary_mag_report.x, primary_mag_report.y,
primary_mag_report.z); // primary mag field vector
float mag_angle_diff_max = 0.0f; // the maximum angle difference
unsigned check_index = 0; // the number of sensors the primary has been checked against
// Check each sensor against the primary
for (int i = 0; i < MAX_SENSOR_COUNT; i++) {
// check that the sensor we are checking against is not the same as the primary
if (_advertised[i] && (_priority[i] > 0) && (i != _selected_sensor_sub_index)) {
// calculate angle to 3D magnetic field vector of the primary sensor
const sensor_mag_s ¤t_mag_report = _last_data[i];
Vector3f current_mag{current_mag_report.x, current_mag_report.y, current_mag_report.z};
float angle_error = AxisAnglef(Quatf(current_mag, primary_mag)).angle();
// complementary filter to not fail/pass on single outliers
_mag_angle_diff[check_index] *= 0.95f;
_mag_angle_diff[check_index] += 0.05f * angle_error;
mag_angle_diff_max = math::max(mag_angle_diff_max, _mag_angle_diff[check_index]);
// increment the check index
check_index++;
}
// check to see if the maximum number of checks has been reached and break
if (check_index >= 2) {
break;
}
}
// get the vector length of the largest difference and write to the combined sensor struct
// will be zero if there is only one magnetometer and hence nothing to compare
preflt.mag_inconsistency_angle = mag_angle_diff_max;
preflt.timestamp = hrt_absolute_time();
_sensor_preflight_mag_pub.publish(preflt);
}
void VehicleMagnetometer::PrintStatus()
{
if (_selected_sensor_sub_index >= 0) {
PX4_INFO("selected magnetometer: %d (%d)", _last_data[_selected_sensor_sub_index].device_id,
_selected_sensor_sub_index);
}
_voter.print();
for (int i = 0; i < MAX_SENSOR_COUNT; i++) {
if (_advertised[i] && (_priority[i] > 0)) {
_calibration[i].PrintStatus();
}
}
}
}; // namespace sensors