VehicleIMU.cpp 17.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/****************************************************************************
 *
 *   Copyright (c) 2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "VehicleIMU.hpp"

#include <px4_platform_common/log.h>

#include <float.h>

using namespace matrix;

using math::constrain;

namespace sensors
{

VehicleIMU::VehicleIMU(int instance, uint8_t accel_index, uint8_t gyro_index, const px4::wq_config_t &config) :
	ModuleParams(nullptr),
	ScheduledWorkItem(MODULE_NAME, config),
	_sensor_accel_sub(this, ORB_ID(sensor_accel), accel_index),
	_sensor_gyro_sub(this, ORB_ID(sensor_gyro), gyro_index),
	_instance(instance)
{
	const float configured_interval_us = 1e6f / _param_imu_integ_rate.get();

	_accel_integrator.set_reset_interval(configured_interval_us);
	_accel_integrator.set_reset_samples(sensor_accel_s::ORB_QUEUE_LENGTH);

	_gyro_integrator.set_reset_interval(configured_interval_us);
	_gyro_integrator.set_reset_samples(sensor_gyro_s::ORB_QUEUE_LENGTH);

#if defined(ENABLE_LOCKSTEP_SCHEDULER)
	// currently with lockstep every raw sample needs a corresponding vehicle_imu publication
	_sensor_accel_sub.set_required_updates(1);
	_sensor_gyro_sub.set_required_updates(1);
#else
	// schedule conservatively until the actual accel & gyro rates are known
	_sensor_accel_sub.set_required_updates(sensor_accel_s::ORB_QUEUE_LENGTH / 2);
	_sensor_gyro_sub.set_required_updates(sensor_gyro_s::ORB_QUEUE_LENGTH / 2);
#endif

	// advertise immediately to ensure consistent ordering
	_vehicle_imu_pub.advertise();
	_vehicle_imu_status_pub.advertise();
}

VehicleIMU::~VehicleIMU()
{
	Stop();

	perf_free(_accel_generation_gap_perf);
	perf_free(_accel_update_perf);
	perf_free(_gyro_generation_gap_perf);
	perf_free(_gyro_update_perf);

	_vehicle_imu_pub.unadvertise();
	_vehicle_imu_status_pub.unadvertise();
}

bool VehicleIMU::Start()
{
	// force initial updates
	ParametersUpdate(true);

	_sensor_gyro_sub.registerCallback();
	_sensor_accel_sub.registerCallback();
	ScheduleNow();
	return true;
}

void VehicleIMU::Stop()
{
	// clear all registered callbacks
	_sensor_accel_sub.unregisterCallback();
	_sensor_gyro_sub.unregisterCallback();

	Deinit();
}

void VehicleIMU::ParametersUpdate(bool force)
{
	// Check if parameters have changed
	if (_parameter_update_sub.updated() || force) {
		// clear update
		parameter_update_s param_update;
		_parameter_update_sub.copy(&param_update);

		const auto imu_integ_rate_prev = _param_imu_integ_rate.get();

		updateParams();

		_accel_calibration.ParametersUpdate();
		_gyro_calibration.ParametersUpdate();

		// constrain IMU integration time 1-10 milliseconds (100-1000 Hz)
		int32_t imu_integration_rate_hz = constrain(_param_imu_integ_rate.get(),
						  100, math::max(_param_imu_gyro_ratemax.get(), 1000));

		if (imu_integration_rate_hz != _param_imu_integ_rate.get()) {
			PX4_WARN("IMU_INTEG_RATE updated %d -> %d", _param_imu_integ_rate.get(), imu_integration_rate_hz);
			_param_imu_integ_rate.set(imu_integration_rate_hz);
			_param_imu_integ_rate.commit_no_notification();
		}

		_imu_integration_interval_us = 1000000 / imu_integration_rate_hz;

		if (_param_imu_integ_rate.get() != imu_integ_rate_prev) {
			// force update
			UpdateIntegratorConfiguration();
		}
	}
}

bool VehicleIMU::UpdateIntervalAverage(IntervalAverage &intavg, const hrt_abstime &timestamp_sample, uint8_t samples)
{
	bool updated = false;

	// conservative maximum time between samples to reject large gaps and reset averaging
	uint32_t max_interval_us = 10000; // 100 Hz
	uint32_t min_interval_us = 100;   // 10,000 Hz

	if (intavg.update_interval > 0.f) {
		// if available use previously calculated interval as bounds
		max_interval_us = roundf(1.5f * intavg.update_interval);
		min_interval_us = roundf(0.5f * intavg.update_interval);
	}

	const uint32_t interval_us = (timestamp_sample - intavg.timestamp_sample_last);

	if ((intavg.timestamp_sample_last > 0) && (interval_us < max_interval_us) && (interval_us > min_interval_us)) {

		intavg.interval_sum += interval_us;
		intavg.interval_samples += samples;
		intavg.interval_count++;

		// periodically calculate sensor update rate
		if (intavg.interval_count > 10000 || ((intavg.update_interval <= FLT_EPSILON) && intavg.interval_count > 100)) {

			const float sample_interval_avg = (float)intavg.interval_sum / (float)intavg.interval_count;

			if (PX4_ISFINITE(sample_interval_avg) && (sample_interval_avg > 0.f)) {
				// update if interval has changed by more than 0.5%
				if ((fabsf(intavg.update_interval - sample_interval_avg) / intavg.update_interval) > 0.005f) {

					intavg.update_interval = sample_interval_avg;
					intavg.update_interval_raw = (float)intavg.interval_sum / (float)intavg.interval_samples;
					updated = true;
				}
			}

			// reset sample interval accumulator
			intavg.interval_sum = 0.f;
			intavg.interval_samples = 0;
			intavg.interval_count = 0;
		}

	} else {
		// reset
		intavg.interval_sum = 0.f;
		intavg.interval_samples = 0;
		intavg.interval_count = 0;
	}

	intavg.timestamp_sample_last = timestamp_sample;

	return updated;
}

void VehicleIMU::Run()
{
	// backup schedule
	ScheduleDelayed(10_ms);

	ParametersUpdate();

	if (!_accel_calibration.enabled() || !_gyro_calibration.enabled()) {
		return;
	}


	bool sensor_data_gap = false;
	bool update_integrator_config = false;
	bool publish_status = false;

	// integrate queued gyro
	sensor_gyro_s gyro;

	while (_sensor_gyro_sub.update(&gyro)) {
		perf_count_interval(_gyro_update_perf, gyro.timestamp_sample);

		if (_sensor_gyro_sub.get_last_generation() != _gyro_last_generation + 1) {
			sensor_data_gap = true;
			perf_count(_gyro_generation_gap_perf);

			_gyro_interval.timestamp_sample_last = 0; // invalidate any ongoing publication rate averaging

		} else {
			// collect sample interval average for filters
			if (!_intervals_configured && UpdateIntervalAverage(_gyro_interval, gyro.timestamp_sample, gyro.samples)) {
				update_integrator_config = true;
				publish_status = true;
				_status.gyro_rate_hz = 1e6f / _gyro_interval.update_interval;
				_status.gyro_raw_rate_hz = 1e6f / _gyro_interval.update_interval_raw;
			}
		}

		_gyro_last_generation = _sensor_gyro_sub.get_last_generation();

		_gyro_calibration.set_device_id(gyro.device_id);

		if (gyro.error_count != _status.gyro_error_count) {
			publish_status = true;
			_status.gyro_error_count = gyro.error_count;
		}

		const Vector3f gyro_raw{gyro.x, gyro.y, gyro.z};
		_gyro_sum += gyro_raw;
		_gyro_temperature += gyro.temperature;
		_gyro_sum_count++;

		_gyro_integrator.put(gyro.timestamp_sample, gyro_raw);
		_last_timestamp_sample_gyro = gyro.timestamp_sample;

		// break if interval is configured and we haven't fallen behind
		if (_intervals_configured && _gyro_integrator.integral_ready()
		    && (hrt_elapsed_time(&gyro.timestamp) < _imu_integration_interval_us) && !sensor_data_gap) {

			break;
		}
	}

	// update accel, stopping once caught up to the last gyro sample
	sensor_accel_s accel;

	while (_sensor_accel_sub.update(&accel)) {
		perf_count_interval(_accel_update_perf, accel.timestamp_sample);

		if (_sensor_accel_sub.get_last_generation() != _accel_last_generation + 1) {
			sensor_data_gap = true;
			perf_count(_accel_generation_gap_perf);

			_accel_interval.timestamp_sample_last = 0; // invalidate any ongoing publication rate averaging

		} else {
			// collect sample interval average for filters
			if (!_intervals_configured && UpdateIntervalAverage(_accel_interval, accel.timestamp_sample, accel.samples)) {
				update_integrator_config = true;
				publish_status = true;
				_status.accel_rate_hz = 1e6f / _accel_interval.update_interval;
				_status.accel_raw_rate_hz = 1e6f / _accel_interval.update_interval_raw;
			}
		}

		_accel_last_generation = _sensor_accel_sub.get_last_generation();

		_accel_calibration.set_device_id(accel.device_id);

		if (accel.error_count != _status.accel_error_count) {
			publish_status = true;
			_status.accel_error_count = accel.error_count;
		}

		const Vector3f accel_raw{accel.x, accel.y, accel.z};
		_accel_sum += accel_raw;
		_accel_temperature += accel.temperature;
		_accel_sum_count++;

		_accel_integrator.put(accel.timestamp_sample, accel_raw);
		_last_timestamp_sample_accel = accel.timestamp_sample;

		if (accel.clip_counter[0] > 0 || accel.clip_counter[1] > 0 || accel.clip_counter[2] > 0) {

			// rotate sensor clip counts into vehicle body frame
			const Vector3f clipping{_accel_calibration.rotation() *
						Vector3f{(float)accel.clip_counter[0], (float)accel.clip_counter[1], (float)accel.clip_counter[2]}};

			// round to get reasonble clip counts per axis (after board rotation)
			const uint8_t clip_x = roundf(fabsf(clipping(0)));
			const uint8_t clip_y = roundf(fabsf(clipping(1)));
			const uint8_t clip_z = roundf(fabsf(clipping(2)));

			_status.accel_clipping[0] += clip_x;
			_status.accel_clipping[1] += clip_y;
			_status.accel_clipping[2] += clip_z;

			if (clip_x > 0) {
				_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_X;
			}

			if (clip_y > 0) {
				_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_Y;
			}

			if (clip_z > 0) {
				_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_Z;
			}

			publish_status = true;
		}

		// break once caught up to gyro
		if (!sensor_data_gap && _intervals_configured
		    && (_last_timestamp_sample_accel >= (_last_timestamp_sample_gyro - 0.5f * _accel_interval.update_interval))) {

			break;
		}
	}

	if (sensor_data_gap) {
		_consecutive_data_gap++;

		// if there's consistently a gap in data start monitoring publication interval again
		if (_consecutive_data_gap > 10) {
			_intervals_configured = false;
		}

	} else {
		_consecutive_data_gap = 0;
	}

	// reconfigure integrators if calculated sensor intervals have changed
	if (update_integrator_config) {
		UpdateIntegratorConfiguration();
	}

	// publish if both accel & gyro integrators are ready
	if (_accel_integrator.integral_ready() && _gyro_integrator.integral_ready()) {

		uint32_t accel_integral_dt;
		uint32_t gyro_integral_dt;
		Vector3f delta_angle;
		Vector3f delta_velocity;

		if (_accel_integrator.reset(delta_velocity, accel_integral_dt)
		    && _gyro_integrator.reset(delta_angle, gyro_integral_dt)) {

			if (_accel_calibration.enabled() && _gyro_calibration.enabled()) {

				// delta angle: apply offsets, scale, and board rotation
				_gyro_calibration.SensorCorrectionsUpdate();
				const float gyro_dt_inv = 1.e6f / gyro_integral_dt;
				const Vector3f delta_angle_corrected{_gyro_calibration.Correct(delta_angle * gyro_dt_inv) / gyro_dt_inv};

				// delta velocity: apply offsets, scale, and board rotation
				_accel_calibration.SensorCorrectionsUpdate();
				const float accel_dt_inv = 1.e6f / accel_integral_dt;
				Vector3f delta_velocity_corrected{_accel_calibration.Correct(delta_velocity * accel_dt_inv) / accel_dt_inv};

				UpdateAccelVibrationMetrics(delta_velocity_corrected);
				UpdateGyroVibrationMetrics(delta_angle_corrected);

				// vehicle_imu_status
				//  publish before vehicle_imu so that error counts are available synchronously if needed
				if (publish_status || (hrt_elapsed_time(&_status.timestamp) >= 100_ms)) {
					_status.accel_device_id = _accel_calibration.device_id();
					_status.gyro_device_id = _gyro_calibration.device_id();

					// mean accel
					const Vector3f accel_mean{_accel_calibration.Correct(_accel_sum / _accel_sum_count)};
					accel_mean.copyTo(_status.mean_accel);
					_status.temperature_accel = _accel_temperature / _accel_sum_count;
					_accel_sum.zero();
					_accel_temperature = 0;
					_accel_sum_count = 0;

					// mean gyro
					const Vector3f gyro_mean{_gyro_calibration.Correct(_gyro_sum / _gyro_sum_count)};
					gyro_mean.copyTo(_status.mean_gyro);
					_status.temperature_gyro = _gyro_temperature / _gyro_sum_count;
					_gyro_sum.zero();
					_gyro_temperature = 0;
					_gyro_sum_count = 0;

					_status.timestamp = hrt_absolute_time();
					_vehicle_imu_status_pub.publish(_status);
				}


				// publish vehicle_imu
				vehicle_imu_s imu;
				imu.timestamp_sample = _last_timestamp_sample_gyro;
				imu.accel_device_id = _accel_calibration.device_id();
				imu.gyro_device_id = _gyro_calibration.device_id();
				delta_angle_corrected.copyTo(imu.delta_angle);
				delta_velocity_corrected.copyTo(imu.delta_velocity);
				imu.delta_angle_dt = gyro_integral_dt;
				imu.delta_velocity_dt = accel_integral_dt;
				imu.delta_velocity_clipping = _delta_velocity_clipping;
				imu.calibration_count = _accel_calibration.calibration_count() + _gyro_calibration.calibration_count();
				imu.timestamp = hrt_absolute_time();
				_vehicle_imu_pub.publish(imu);
			}

			// reset clip counts
			_delta_velocity_clipping = 0;

			return;
		}
	}
}

void VehicleIMU::UpdateIntegratorConfiguration()
{
	if ((_accel_interval.update_interval > 0) && (_gyro_interval.update_interval > 0)) {

		const float configured_interval_us = 1e6f / _param_imu_integ_rate.get();

		// determine number of sensor samples that will get closest to the desired integration interval
		const uint8_t accel_integral_samples = math::max(1.f, roundf(configured_interval_us / _accel_interval.update_interval));
		const uint8_t gyro_integral_samples = math::max(1.f, roundf(configured_interval_us / _gyro_interval.update_interval));

		// let the gyro set the configuration and scheduling
		// accel integrator will be forced to reset when gyro integrator is ready
		_gyro_integrator.set_reset_samples(gyro_integral_samples);
		_accel_integrator.set_reset_samples(1);

		// relaxed minimum integration time required
		_accel_integrator.set_reset_interval(roundf((accel_integral_samples - 0.5f) * _accel_interval.update_interval));
		_gyro_integrator.set_reset_interval(roundf((gyro_integral_samples - 0.5f) * _gyro_interval.update_interval));

		// gyro: find largest integer multiple of gyro_integral_samples
		for (int n = sensor_gyro_s::ORB_QUEUE_LENGTH; n > 0; n--) {
			if (gyro_integral_samples % n == 0) {
				_sensor_gyro_sub.set_required_updates(n);

				// run when there are enough new gyro samples, unregister accel
				_sensor_accel_sub.unregisterCallback();

				_intervals_configured = true; // stop monitoring topic publication rates

				PX4_DEBUG("accel (%d), gyro (%d), accel samples: %d, gyro samples: %d, accel interval: %.1f, gyro interval: %.1f sub samples: %d",
					  _accel_calibration.device_id(), _gyro_calibration.device_id(), accel_integral_samples, gyro_integral_samples,
					  (double)_accel_interval.update_interval, (double)_gyro_interval.update_interval, n);

				break;
			}
		}
	}
}

void VehicleIMU::UpdateAccelVibrationMetrics(const Vector3f &delta_velocity)
{
	// Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
	const Vector3f delta_velocity_diff = delta_velocity - _delta_velocity_prev;
	_status.accel_vibration_metric = 0.99f * _status.accel_vibration_metric + 0.01f * delta_velocity_diff.norm();

	_delta_velocity_prev = delta_velocity;
}

void VehicleIMU::UpdateGyroVibrationMetrics(const Vector3f &delta_angle)
{
	// Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
	const Vector3f delta_angle_diff = delta_angle - _delta_angle_prev;
	_status.gyro_vibration_metric = 0.99f * _status.gyro_vibration_metric + 0.01f * delta_angle_diff.norm();

	// Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
	const Vector3f coning_metric = delta_angle % _delta_angle_prev;
	_status.gyro_coning_vibration = 0.99f * _status.gyro_coning_vibration + 0.01f * coning_metric.norm();

	_delta_angle_prev = delta_angle;
}

void VehicleIMU::PrintStatus()
{
	if (_accel_calibration.device_id() == _gyro_calibration.device_id()) {
		PX4_INFO("%d - IMU ID: %d, accel interval: %.1f us, gyro interval: %.1f us", _instance, _accel_calibration.device_id(),
			 (double)_accel_interval.update_interval, (double)_gyro_interval.update_interval);

	} else {
		PX4_INFO("%d - Accel ID: %d, interval: %.1f us, Gyro ID: %d, interval: %.1f us", _instance,
			 _accel_calibration.device_id(),
			 (double)_accel_interval.update_interval, _gyro_calibration.device_id(), (double)_gyro_interval.update_interval);
	}

	perf_print_counter(_accel_generation_gap_perf);
	perf_print_counter(_gyro_generation_gap_perf);
	perf_print_counter(_accel_update_perf);
	perf_print_counter(_gyro_update_perf);

	_accel_calibration.PrintStatus();
	_gyro_calibration.PrintStatus();
}

} // namespace sensors