RoverPositionControl.cpp
17.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/****************************************************************************
*
* Copyright (c) 2017, 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
*
* This module is a modification of the fixed wing module and it is designed for ground rovers.
* It has been developed starting from the fw module, simplified and improved with dedicated items.
*
* All the acknowledgments and credits for the fw wing app are reported in those files.
*
* @author Marco Zorzi <mzorzi@student.ethz.ch>
*/
#include "RoverPositionControl.hpp"
#include <lib/ecl/geo/geo.h>
#define ACTUATOR_PUBLISH_PERIOD_MS 4
using namespace matrix;
/**
* L1 control app start / stop handling function
*
* @ingroup apps
*/
extern "C" __EXPORT int rover_pos_control_main(int argc, char *argv[]);
RoverPositionControl::RoverPositionControl() :
ModuleParams(nullptr),
WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
/* performance counters */
_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle")) // TODO : do we even need these perf counters
{
}
RoverPositionControl::~RoverPositionControl()
{
perf_free(_loop_perf);
}
bool
RoverPositionControl::init()
{
if (!_vehicle_attitude_sub.registerCallback()) {
PX4_ERR("vehicle attitude callback registration failed!");
return false;
}
return true;
}
void RoverPositionControl::parameters_update(bool force)
{
// check for parameter updates
if (_parameter_update_sub.updated() || force) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
_gnd_control.set_l1_damping(_param_l1_damping.get());
_gnd_control.set_l1_period(_param_l1_period.get());
_gnd_control.set_l1_roll_limit(math::radians(0.0f));
pid_init(&_speed_ctrl, PID_MODE_DERIVATIV_CALC, 0.01f);
pid_set_parameters(&_speed_ctrl,
_param_speed_p.get(),
_param_speed_i.get(),
_param_speed_d.get(),
_param_speed_imax.get(),
_param_gndspeed_max.get());
}
}
void
RoverPositionControl::vehicle_control_mode_poll()
{
if (_control_mode_sub.updated()) {
_control_mode_sub.copy(&_control_mode);
}
}
void
RoverPositionControl::manual_control_setpoint_poll()
{
if (_control_mode.flag_control_manual_enabled) {
if (_manual_control_setpoint_sub.copy(&_manual_control_setpoint)) {
float dt = math::constrain(hrt_elapsed_time(&_manual_setpoint_last_called) * 1e-6f, 0.0002f, 0.04f);
if (!_control_mode.flag_control_climb_rate_enabled &&
!_control_mode.flag_control_offboard_enabled) {
if (_control_mode.flag_control_attitude_enabled) {
// STABILIZED mode generate the attitude setpoint from manual user inputs
_att_sp.roll_body = 0.0;
_att_sp.pitch_body = 0.0;
/* reset yaw setpoint to current position if needed */
if (_reset_yaw_sp) {
const float vehicle_yaw = Eulerf(Quatf(_vehicle_att.q)).psi();
_manual_yaw_sp = vehicle_yaw;
_reset_yaw_sp = false;
} else {
const float yaw_rate = math::radians(_param_gnd_man_y_max.get());
_att_sp.yaw_sp_move_rate = _manual_control_setpoint.y * yaw_rate;
_manual_yaw_sp = wrap_pi(_manual_yaw_sp + _att_sp.yaw_sp_move_rate * dt);
}
_att_sp.yaw_body = _manual_yaw_sp;
_att_sp.thrust_body[0] = _manual_control_setpoint.z;
Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
q.copyTo(_att_sp.q_d);
_att_sp.timestamp = hrt_absolute_time();
_attitude_sp_pub.publish(_att_sp);
} else {
_act_controls.control[actuator_controls_s::INDEX_ROLL] = 0.0f; // Nominally roll: _manual_control_setpoint.y;
_act_controls.control[actuator_controls_s::INDEX_PITCH] = 0.0f; // Nominally pitch: -_manual_control_setpoint.x;
// Set heading from the manual roll input channel
_act_controls.control[actuator_controls_s::INDEX_YAW] =
_manual_control_setpoint.y; // Nominally yaw: _manual_control_setpoint.r;
// Set throttle from the manual throttle channel
_act_controls.control[actuator_controls_s::INDEX_THROTTLE] = _manual_control_setpoint.z;
_reset_yaw_sp = true;
}
} else {
_reset_yaw_sp = true;
}
_manual_setpoint_last_called = hrt_absolute_time();
}
}
}
void
RoverPositionControl::position_setpoint_triplet_poll()
{
if (_pos_sp_triplet_sub.updated()) {
_pos_sp_triplet_sub.copy(&_pos_sp_triplet);
}
}
void
RoverPositionControl::attitude_setpoint_poll()
{
if (_att_sp_sub.updated()) {
_att_sp_sub.copy(&_att_sp);
}
}
bool
RoverPositionControl::control_position(const matrix::Vector2d ¤t_position,
const matrix::Vector3f &ground_speed, const position_setpoint_triplet_s &pos_sp_triplet)
{
float dt = 0.01; // Using non zero value to a avoid division by zero
if (_control_position_last_called > 0) {
dt = hrt_elapsed_time(&_control_position_last_called) * 1e-6f;
}
_control_position_last_called = hrt_absolute_time();
bool setpoint = true;
if ((_control_mode.flag_control_auto_enabled ||
_control_mode.flag_control_offboard_enabled) && pos_sp_triplet.current.valid) {
/* AUTONOMOUS FLIGHT */
_control_mode_current = UGV_POSCTRL_MODE_AUTO;
/* get circle mode */
//bool was_circle_mode = _gnd_control.circle_mode();
/* current waypoint (the one currently heading for) */
matrix::Vector2d curr_wp(pos_sp_triplet.current.lat, pos_sp_triplet.current.lon);
/* previous waypoint */
matrix::Vector2d prev_wp = curr_wp;
if (pos_sp_triplet.previous.valid) {
prev_wp(0) = pos_sp_triplet.previous.lat;
prev_wp(1) = pos_sp_triplet.previous.lon;
}
matrix::Vector2f ground_speed_2d(ground_speed);
float mission_throttle = _param_throttle_cruise.get();
/* Just control the throttle */
if (_param_speed_control_mode.get() == 1) {
/* control the speed in closed loop */
float mission_target_speed = _param_gndspeed_trim.get();
if (PX4_ISFINITE(_pos_sp_triplet.current.cruising_speed) &&
_pos_sp_triplet.current.cruising_speed > 0.1f) {
mission_target_speed = _pos_sp_triplet.current.cruising_speed;
}
// Velocity in body frame
const Dcmf R_to_body(Quatf(_vehicle_att.q).inversed());
const Vector3f vel = R_to_body * Vector3f(ground_speed(0), ground_speed(1), ground_speed(2));
const float x_vel = vel(0);
const float x_acc = _vehicle_acceleration_sub.get().xyz[0];
// Compute airspeed control out and just scale it as a constant
mission_throttle = _param_throttle_speed_scaler.get()
* pid_calculate(&_speed_ctrl, mission_target_speed, x_vel, x_acc, dt);
// Constrain throttle between min and max
mission_throttle = math::constrain(mission_throttle, _param_throttle_min.get(), _param_throttle_max.get());
} else {
/* Just control throttle in open loop */
if (PX4_ISFINITE(_pos_sp_triplet.current.cruising_throttle) &&
_pos_sp_triplet.current.cruising_throttle > 0.01f) {
mission_throttle = _pos_sp_triplet.current.cruising_throttle;
}
}
float dist_target = get_distance_to_next_waypoint(_global_pos.lat, _global_pos.lon,
(double)curr_wp(0), (double)curr_wp(1)); // pos_sp_triplet.current.lat, pos_sp_triplet.current.lon);
//PX4_INFO("Setpoint type %d", (int) pos_sp_triplet.current.type );
//PX4_INFO(" State machine state %d", (int) _pos_ctrl_state);
//PX4_INFO(" Setpoint Lat %f, Lon %f", (double) curr_wp(0), (double)curr_wp(1));
//PX4_INFO(" Distance to target %f", (double) dist_target);
switch (_pos_ctrl_state) {
case GOTO_WAYPOINT: {
if (dist_target < _param_nav_loiter_rad.get()) {
_pos_ctrl_state = STOPPING; // We are closer than loiter radius to waypoint, stop.
} else {
_gnd_control.navigate_waypoints(prev_wp, curr_wp, current_position, ground_speed_2d);
_act_controls.control[actuator_controls_s::INDEX_THROTTLE] = mission_throttle;
float desired_r = ground_speed_2d.norm_squared() / math::abs_t(_gnd_control.nav_lateral_acceleration_demand());
float desired_theta = (0.5f * M_PI_F) - atan2f(desired_r, _param_wheel_base.get());
float control_effort = (desired_theta / _param_max_turn_angle.get()) * sign(
_gnd_control.nav_lateral_acceleration_demand());
control_effort = math::constrain(control_effort, -1.0f, 1.0f);
_act_controls.control[actuator_controls_s::INDEX_YAW] = control_effort;
}
}
break;
case STOPPING: {
_act_controls.control[actuator_controls_s::INDEX_YAW] = 0.0f;
_act_controls.control[actuator_controls_s::INDEX_THROTTLE] = 0.0f;
// Note _prev_wp is different to the local prev_wp which is related to a mission waypoint.
float dist_between_waypoints = get_distance_to_next_waypoint((double)_prev_wp(0), (double)_prev_wp(1),
(double)curr_wp(0), (double)curr_wp(1));
if (dist_between_waypoints > 0) {
_pos_ctrl_state = GOTO_WAYPOINT; // A new waypoint has arrived go to it
}
//PX4_INFO(" Distance between prev and curr waypoints %f", (double)dist_between_waypoints);
}
break;
default:
PX4_ERR("Unknown Rover State");
_pos_ctrl_state = STOPPING;
break;
}
_prev_wp = curr_wp;
} else {
_control_mode_current = UGV_POSCTRL_MODE_OTHER;
setpoint = false;
}
return setpoint;
}
void
RoverPositionControl::control_velocity(const matrix::Vector3f ¤t_velocity)
{
const Vector3f desired_velocity{_trajectory_setpoint.vx, _trajectory_setpoint.vy, _trajectory_setpoint.vz};
float dt = 0.01; // Using non zero value to a avoid division by zero
const float mission_throttle = _param_throttle_cruise.get();
const float desired_speed = desired_velocity.norm();
if (desired_speed > 0.01f) {
const Dcmf R_to_body(Quatf(_vehicle_att.q).inversed());
const Vector3f vel = R_to_body * Vector3f(current_velocity(0), current_velocity(1), current_velocity(2));
const float x_vel = vel(0);
const float x_acc = _vehicle_acceleration_sub.get().xyz[0];
const float control_throttle = pid_calculate(&_speed_ctrl, desired_speed, x_vel, x_acc, dt);
//Constrain maximum throttle to mission throttle
_act_controls.control[actuator_controls_s::INDEX_THROTTLE] = math::constrain(control_throttle, 0.0f, mission_throttle);
Vector3f desired_body_velocity;
if (_velocity_frame == VelocityFrame::NED) {
desired_body_velocity = desired_velocity;
} else {
// If the frame of the velocity setpoint is unknown, assume it is in local frame
desired_body_velocity = R_to_body * desired_velocity;
}
const float desired_theta = atan2f(desired_body_velocity(1), desired_body_velocity(0));
float control_effort = desired_theta / _param_max_turn_angle.get();
control_effort = math::constrain(control_effort, -1.0f, 1.0f);
_act_controls.control[actuator_controls_s::INDEX_YAW] = control_effort;
} else {
_act_controls.control[actuator_controls_s::INDEX_THROTTLE] = 0.0f;
_act_controls.control[actuator_controls_s::INDEX_YAW] = 0.0f;
}
}
void
RoverPositionControl::control_attitude(const vehicle_attitude_s &att, const vehicle_attitude_setpoint_s &att_sp)
{
// quaternion attitude control law, qe is rotation from q to qd
const Quatf qe = Quatf(att.q).inversed() * Quatf(att_sp.q_d);
const Eulerf euler_sp = qe;
float control_effort = euler_sp(2) / _param_max_turn_angle.get();
control_effort = math::constrain(control_effort, -1.0f, 1.0f);
_act_controls.control[actuator_controls_s::INDEX_YAW] = control_effort;
const float control_throttle = att_sp.thrust_body[0];
_act_controls.control[actuator_controls_s::INDEX_THROTTLE] = math::constrain(control_throttle, 0.0f, 1.0f);
}
void
RoverPositionControl::Run()
{
parameters_update(true);
if (_vehicle_attitude_sub.update(&_vehicle_att)) {
/* check vehicle control mode for changes to publication state */
vehicle_control_mode_poll();
attitude_setpoint_poll();
manual_control_setpoint_poll();
_vehicle_acceleration_sub.update();
/* update parameters from storage */
parameters_update();
/* only run controller if position changed */
if (_local_pos_sub.update(&_local_pos)) {
/* load local copies */
_global_pos_sub.update(&_global_pos);
position_setpoint_triplet_poll();
// Convert Local setpoints to global setpoints
if (_control_mode.flag_control_offboard_enabled) {
if (!map_projection_initialized(&_global_local_proj_ref)
|| (_global_local_proj_ref.timestamp != _local_pos.ref_timestamp)) {
map_projection_init_timestamped(&_global_local_proj_ref, _local_pos.ref_lat, _local_pos.ref_lon,
_local_pos.ref_timestamp);
_global_local_alt0 = _local_pos.ref_alt;
}
_trajectory_setpoint_sub.update(&_trajectory_setpoint);
// local -> global
map_projection_reproject(&_global_local_proj_ref,
_trajectory_setpoint.x, _trajectory_setpoint.y,
&_pos_sp_triplet.current.lat, &_pos_sp_triplet.current.lon);
_pos_sp_triplet.current.alt = _global_local_alt0 - _trajectory_setpoint.z;
_pos_sp_triplet.current.valid = true;
}
// update the reset counters in any case
_pos_reset_counter = _global_pos.lat_lon_reset_counter;
matrix::Vector3f ground_speed(_local_pos.vx, _local_pos.vy, _local_pos.vz);
matrix::Vector2d current_position(_global_pos.lat, _global_pos.lon);
matrix::Vector3f current_velocity(_local_pos.vx, _local_pos.vy, _local_pos.vz);
if (!_control_mode.flag_control_manual_enabled && _control_mode.flag_control_position_enabled) {
if (control_position(current_position, ground_speed, _pos_sp_triplet)) {
//TODO: check if radius makes sense here
float turn_distance = _param_l1_distance.get(); //_gnd_control.switch_distance(100.0f);
// publish status
position_controller_status_s pos_ctrl_status{};
pos_ctrl_status.nav_roll = 0.0f;
pos_ctrl_status.nav_pitch = 0.0f;
pos_ctrl_status.nav_bearing = _gnd_control.nav_bearing();
pos_ctrl_status.target_bearing = _gnd_control.target_bearing();
pos_ctrl_status.xtrack_error = _gnd_control.crosstrack_error();
pos_ctrl_status.wp_dist = get_distance_to_next_waypoint(_global_pos.lat, _global_pos.lon,
_pos_sp_triplet.current.lat, _pos_sp_triplet.current.lon);
pos_ctrl_status.acceptance_radius = turn_distance;
pos_ctrl_status.yaw_acceptance = NAN;
pos_ctrl_status.timestamp = hrt_absolute_time();
_pos_ctrl_status_pub.publish(pos_ctrl_status);
}
} else if (!_control_mode.flag_control_manual_enabled && _control_mode.flag_control_velocity_enabled) {
_trajectory_setpoint_sub.update(&_trajectory_setpoint);
control_velocity(current_velocity);
}
}
// Respond to an attitude update and run the attitude controller if enabled
if (_control_mode.flag_control_attitude_enabled
&& !_control_mode.flag_control_position_enabled
&& !_control_mode.flag_control_velocity_enabled) {
control_attitude(_vehicle_att, _att_sp);
}
/* Only publish if any of the proper modes are enabled */
if (_control_mode.flag_control_velocity_enabled ||
_control_mode.flag_control_attitude_enabled ||
_control_mode.flag_control_position_enabled ||
_control_mode.flag_control_manual_enabled) {
// timestamp and publish controls
_act_controls.timestamp = hrt_absolute_time();
_actuator_controls_pub.publish(_act_controls);
}
}
}
int RoverPositionControl::task_spawn(int argc, char *argv[])
{
RoverPositionControl *instance = new RoverPositionControl();
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int RoverPositionControl::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int RoverPositionControl::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
Controls the position of a ground rover using an L1 controller.
Publishes `actuator_controls_0` messages at a constant 250Hz.
### Implementation
Currently, this implementation supports only a few modes:
* Full manual: Throttle and yaw controls are passed directly through to the actuators
* Auto mission: The rover runs missions
* Loiter: The rover will navigate to within the loiter radius, then stop the motors
### Examples
CLI usage example:
$ rover_pos_control start
$ rover_pos_control status
$ rover_pos_control stop
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("rover_pos_control", "controller");
PRINT_MODULE_USAGE_COMMAND("start")
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
int rover_pos_control_main(int argc, char *argv[])
{
return RoverPositionControl::main(argc, argv);
}