MulticopterPositionControl.cpp 20.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
/****************************************************************************
 *
 *   Copyright (c) 2013-2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "MulticopterPositionControl.hpp"

#include <float.h>
#include <lib/mathlib/mathlib.h>
#include <lib/matrix/matrix/math.hpp>
#include "PositionControl/ControlMath.hpp"

using namespace matrix;

MulticopterPositionControl::MulticopterPositionControl(bool vtol) :
	SuperBlock(nullptr, "MPC"),
	ModuleParams(nullptr),
	ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
	_vehicle_attitude_setpoint_pub(vtol ? ORB_ID(mc_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
	_vel_x_deriv(this, "VELD"),
	_vel_y_deriv(this, "VELD"),
	_vel_z_deriv(this, "VELD")
{
	// fetch initial parameter values
	parameters_update(true);

	// set failsafe hysteresis
	_failsafe_land_hysteresis.set_hysteresis_time_from(false, LOITER_TIME_BEFORE_DESCEND);

	reset_setpoint_to_nan(_setpoint);
}

MulticopterPositionControl::~MulticopterPositionControl()
{
	perf_free(_cycle_perf);
}

bool MulticopterPositionControl::init()
{
	if (!_local_pos_sub.registerCallback()) {
		PX4_ERR("vehicle_local_position callback registration failed!");
		return false;
	}

	_time_stamp_last_loop = hrt_absolute_time();
	ScheduleNow();

	return true;
}

int MulticopterPositionControl::parameters_update(bool force)
{
	// check for parameter updates
	if (_parameter_update_sub.updated() || force) {
		// clear update
		parameter_update_s pupdate;
		_parameter_update_sub.copy(&pupdate);

		// update parameters from storage
		ModuleParams::updateParams();
		SuperBlock::updateParams();

		int num_changed = 0;

		if (_param_sys_vehicle_resp.get() >= 0.f) {
			// make it less sensitive at the lower end
			float responsiveness = _param_sys_vehicle_resp.get() * _param_sys_vehicle_resp.get();

			num_changed += _param_mpc_acc_hor.commit_no_notification(math::lerp(1.f, 15.f, responsiveness));
			num_changed += _param_mpc_acc_hor_max.commit_no_notification(math::lerp(2.f, 15.f, responsiveness));
			num_changed += _param_mpc_man_y_max.commit_no_notification(math::lerp(80.f, 450.f, responsiveness));

			if (responsiveness > 0.6f) {
				num_changed += _param_mpc_man_y_tau.commit_no_notification(0.f);

			} else {
				num_changed += _param_mpc_man_y_tau.commit_no_notification(math::lerp(0.5f, 0.f, responsiveness / 0.6f));
			}

			if (responsiveness < 0.5f) {
				num_changed += _param_mpc_tiltmax_air.commit_no_notification(45.f);

			} else {
				num_changed += _param_mpc_tiltmax_air.commit_no_notification(math::min(MAX_SAFE_TILT_DEG, math::lerp(45.f, 70.f,
						(responsiveness - 0.5f) * 2.f)));
			}

			num_changed += _param_mpc_acc_down_max.commit_no_notification(math::lerp(0.8f, 15.f, responsiveness));
			num_changed += _param_mpc_acc_up_max.commit_no_notification(math::lerp(1.f, 15.f, responsiveness));
			num_changed += _param_mpc_jerk_max.commit_no_notification(math::lerp(2.f, 50.f, responsiveness));
			num_changed += _param_mpc_jerk_auto.commit_no_notification(math::lerp(1.f, 25.f, responsiveness));
		}

		if (_param_mpc_xy_vel_all.get() >= 0.f) {
			float xy_vel = _param_mpc_xy_vel_all.get();
			num_changed += _param_mpc_vel_manual.commit_no_notification(xy_vel);
			num_changed += _param_mpc_xy_cruise.commit_no_notification(xy_vel);
			num_changed += _param_mpc_xy_vel_max.commit_no_notification(xy_vel);
			num_changed += _param_mpc_land_vel_xy.commit_no_notification(xy_vel * 0.75f);
		}

		if (_param_mpc_z_vel_all.get() >= 0.f) {
			float z_vel = _param_mpc_z_vel_all.get();
			num_changed += _param_mpc_z_vel_max_up.commit_no_notification(z_vel);
			num_changed += _param_mpc_z_vel_max_dn.commit_no_notification(z_vel * 0.75f);
			num_changed += _param_mpc_tko_speed.commit_no_notification(z_vel * 0.6f);
			num_changed += _param_mpc_land_speed.commit_no_notification(z_vel * 0.5f);
		}

		if (num_changed > 0) {
			param_notify_changes();
		}

		if (_param_mpc_tiltmax_air.get() > MAX_SAFE_TILT_DEG) {
			_param_mpc_tiltmax_air.set(MAX_SAFE_TILT_DEG);
			_param_mpc_tiltmax_air.commit();
			mavlink_log_critical(&_mavlink_log_pub, "Tilt constrained to safe value");
		}

		if (_param_mpc_tiltmax_lnd.get() > _param_mpc_tiltmax_air.get()) {
			_param_mpc_tiltmax_lnd.set(_param_mpc_tiltmax_air.get());
			_param_mpc_tiltmax_lnd.commit();
			mavlink_log_critical(&_mavlink_log_pub, "Land tilt has been constrained by max tilt");
		}

		_control.setPositionGains(Vector3f(_param_mpc_xy_p.get(), _param_mpc_xy_p.get(), _param_mpc_z_p.get()));
		_control.setVelocityGains(
			Vector3f(_param_mpc_xy_vel_p_acc.get(), _param_mpc_xy_vel_p_acc.get(), _param_mpc_z_vel_p_acc.get()),
			Vector3f(_param_mpc_xy_vel_i_acc.get(), _param_mpc_xy_vel_i_acc.get(), _param_mpc_z_vel_i_acc.get()),
			Vector3f(_param_mpc_xy_vel_d_acc.get(), _param_mpc_xy_vel_d_acc.get(), _param_mpc_z_vel_d_acc.get()));

		// Check that the design parameters are inside the absolute maximum constraints
		if (_param_mpc_xy_cruise.get() > _param_mpc_xy_vel_max.get()) {
			_param_mpc_xy_cruise.set(_param_mpc_xy_vel_max.get());
			_param_mpc_xy_cruise.commit();
			mavlink_log_critical(&_mavlink_log_pub, "Cruise speed has been constrained by max speed");
		}

		if (_param_mpc_vel_manual.get() > _param_mpc_xy_vel_max.get()) {
			_param_mpc_vel_manual.set(_param_mpc_xy_vel_max.get());
			_param_mpc_vel_manual.commit();
			mavlink_log_critical(&_mavlink_log_pub, "Manual speed has been constrained by max speed");
		}

		if (_param_mpc_thr_hover.get() > _param_mpc_thr_max.get() ||
		    _param_mpc_thr_hover.get() < _param_mpc_thr_min.get()) {
			_param_mpc_thr_hover.set(math::constrain(_param_mpc_thr_hover.get(), _param_mpc_thr_min.get(),
						 _param_mpc_thr_max.get()));
			_param_mpc_thr_hover.commit();
			mavlink_log_critical(&_mavlink_log_pub, "Hover thrust has been constrained by min/max");
		}

		if (!_param_mpc_use_hte.get() || !_hover_thrust_initialized) {
			_control.setHoverThrust(_param_mpc_thr_hover.get());
			_hover_thrust_initialized = true;
		}

		// initialize vectors from params and enforce constraints
		_param_mpc_tko_speed.set(math::min(_param_mpc_tko_speed.get(), _param_mpc_z_vel_max_up.get()));
		_param_mpc_land_speed.set(math::min(_param_mpc_land_speed.get(), _param_mpc_z_vel_max_dn.get()));

		_takeoff.setSpoolupTime(_param_mpc_spoolup_time.get());
		_takeoff.setTakeoffRampTime(_param_mpc_tko_ramp_t.get());
		_takeoff.generateInitialRampValue(_param_mpc_z_vel_p_acc.get());
	}

	return OK;
}

PositionControlStates MulticopterPositionControl::set_vehicle_states(const vehicle_local_position_s &local_pos)
{
	PositionControlStates states;

	// only set position states if valid and finite
	if (PX4_ISFINITE(local_pos.x) && PX4_ISFINITE(local_pos.y) && local_pos.xy_valid) {
		states.position(0) = local_pos.x;
		states.position(1) = local_pos.y;

	} else {
		states.position(0) = NAN;
		states.position(1) = NAN;
	}

	if (PX4_ISFINITE(local_pos.z) && local_pos.z_valid) {
		states.position(2) = local_pos.z;

	} else {
		states.position(2) = NAN;
	}

	if (PX4_ISFINITE(local_pos.vx) && PX4_ISFINITE(local_pos.vy) && local_pos.v_xy_valid) {
		states.velocity(0) = local_pos.vx;
		states.velocity(1) = local_pos.vy;
		states.acceleration(0) = _vel_x_deriv.update(local_pos.vx);
		states.acceleration(1) = _vel_y_deriv.update(local_pos.vy);

	} else {
		states.velocity(0) = NAN;
		states.velocity(1) = NAN;
		states.acceleration(0) = NAN;
		states.acceleration(1) = NAN;

		// reset derivatives to prevent acceleration spikes when regaining velocity
		_vel_x_deriv.reset();
		_vel_y_deriv.reset();
	}

	if (PX4_ISFINITE(local_pos.vz) && local_pos.v_z_valid) {
		states.velocity(2) = local_pos.vz;
		states.acceleration(2) = _vel_z_deriv.update(states.velocity(2));

	} else {
		states.velocity(2) = NAN;
		states.acceleration(2) = NAN;

		// reset derivative to prevent acceleration spikes when regaining velocity
		_vel_z_deriv.reset();
	}

	states.yaw = local_pos.heading;

	return states;
}

void MulticopterPositionControl::Run()
{
	if (should_exit()) {
		_local_pos_sub.unregisterCallback();
		exit_and_cleanup();
		return;
	}

	// reschedule backup
	ScheduleDelayed(100_ms);

	parameters_update(false);

	perf_begin(_cycle_perf);
	vehicle_local_position_s local_pos;

	if (_local_pos_sub.update(&local_pos)) {
		const hrt_abstime time_stamp_now = local_pos.timestamp;
		const float dt = math::constrain(((time_stamp_now - _time_stamp_last_loop) * 1e-6f), 0.002f, 0.04f);
		_time_stamp_last_loop = time_stamp_now;

		// set _dt in controllib Block for BlockDerivative
		setDt(dt);

		const bool was_in_failsafe = _in_failsafe;
		_in_failsafe = false;

		_control_mode_sub.update(&_control_mode);
		_vehicle_land_detected_sub.update(&_vehicle_land_detected);

		if (_param_mpc_use_hte.get()) {
			hover_thrust_estimate_s hte;

			if (_hover_thrust_estimate_sub.update(&hte)) {
				if (hte.valid) {
					_control.updateHoverThrust(hte.hover_thrust);
				}
			}
		}

		PositionControlStates states{set_vehicle_states(local_pos)};

		if (_control_mode.flag_control_acceleration_enabled || _control_mode.flag_control_climb_rate_enabled) {

			_trajectory_setpoint_sub.update(&_setpoint);

			// adjust existing (or older) setpoint with any EKF reset deltas
			if (_setpoint.timestamp < local_pos.timestamp) {
				if (local_pos.vxy_reset_counter != _vxy_reset_counter) {
					_setpoint.vx += local_pos.delta_vxy[0];
					_setpoint.vy += local_pos.delta_vxy[1];
				}

				if (local_pos.vz_reset_counter != _vz_reset_counter) {
					_setpoint.vz += local_pos.delta_vz;
				}

				if (local_pos.xy_reset_counter != _xy_reset_counter) {
					_setpoint.x += local_pos.delta_xy[0];
					_setpoint.y += local_pos.delta_xy[1];
				}

				if (local_pos.z_reset_counter != _z_reset_counter) {
					_setpoint.z += local_pos.delta_z;
				}

				if (local_pos.heading_reset_counter != _heading_reset_counter) {
					_setpoint.yaw += local_pos.delta_heading;
				}
			}

			// update vehicle constraints and handle smooth takeoff
			_vehicle_constraints_sub.update(&_vehicle_constraints);

			// fix to prevent the takeoff ramp to ramp to a too high value or get stuck because of NAN
			// TODO: this should get obsolete once the takeoff limiting moves into the flight tasks
			if (!PX4_ISFINITE(_vehicle_constraints.speed_up) || (_vehicle_constraints.speed_up > _param_mpc_z_vel_max_up.get())) {
				_vehicle_constraints.speed_up = _param_mpc_z_vel_max_up.get();
			}

			if (_control_mode.flag_control_offboard_enabled) {

				bool want_takeoff = _control_mode.flag_armed && _vehicle_land_detected.landed
						    && hrt_elapsed_time(&_setpoint.timestamp) < 1_s;

				if (want_takeoff && PX4_ISFINITE(_setpoint.z)
				    && (_setpoint.z < states.position(2))) {

					_vehicle_constraints.want_takeoff = true;

				} else if (want_takeoff && PX4_ISFINITE(_setpoint.vz)
					   && (_setpoint.vz < 0.f)) {

					_vehicle_constraints.want_takeoff = true;

				} else if (want_takeoff && PX4_ISFINITE(_setpoint.acceleration[2])
					   && (_setpoint.acceleration[2] < 0.f)) {

					_vehicle_constraints.want_takeoff = true;

				} else {
					_vehicle_constraints.want_takeoff = false;
				}

				// override with defaults
				_vehicle_constraints.speed_xy = _param_mpc_xy_vel_max.get();
				_vehicle_constraints.speed_up = _param_mpc_z_vel_max_up.get();
				_vehicle_constraints.speed_down = _param_mpc_z_vel_max_dn.get();
			}

			// handle smooth takeoff
			_takeoff.updateTakeoffState(_control_mode.flag_armed, _vehicle_land_detected.landed, _vehicle_constraints.want_takeoff,
						    _vehicle_constraints.speed_up, false, time_stamp_now);

			const bool not_taken_off = (_takeoff.getTakeoffState() < TakeoffState::rampup);
			const bool flying = (_takeoff.getTakeoffState() >= TakeoffState::flight);
			const bool flying_but_ground_contact = (flying && _vehicle_land_detected.ground_contact);

			if (not_taken_off || flying_but_ground_contact) {
				// we are not flying yet and need to avoid any corrections
				reset_setpoint_to_nan(_setpoint);
				Vector3f(0.f, 0.f, 100.f).copyTo(_setpoint.acceleration); // High downwards acceleration to make sure there's no thrust

				// prevent any integrator windup
				_control.resetIntegral();
			}

			// limit tilt during takeoff ramupup
			if (_takeoff.getTakeoffState() < TakeoffState::flight) {
				_control.setTiltLimit(math::radians(_param_mpc_tiltmax_lnd.get()));

			} else {
				_control.setTiltLimit(math::radians(_param_mpc_tiltmax_air.get()));
			}

			const float speed_up = _takeoff.updateRamp(dt,
					       PX4_ISFINITE(_vehicle_constraints.speed_up) ? _vehicle_constraints.speed_up : _param_mpc_z_vel_max_up.get());
			const float speed_down = PX4_ISFINITE(_vehicle_constraints.speed_down) ? _vehicle_constraints.speed_down :
						 _param_mpc_z_vel_max_dn.get();
			const float speed_horizontal = PX4_ISFINITE(_vehicle_constraints.speed_xy) ? _vehicle_constraints.speed_xy :
						       _param_mpc_xy_vel_max.get();

			// Allow ramping from zero thrust on takeoff
			const float minimum_thrust = flying ? _param_mpc_thr_min.get() : 0.f;

			_control.setThrustLimits(minimum_thrust, _param_mpc_thr_max.get());

			_control.setVelocityLimits(
				math::constrain(speed_horizontal, 0.f, _param_mpc_xy_vel_max.get()),
				math::min(speed_up, _param_mpc_z_vel_max_up.get()), // takeoff ramp starts with negative velocity limit
				math::constrain(speed_down, 0.f, _param_mpc_z_vel_max_dn.get()));

			_control.setInputSetpoint(_setpoint);

			// update states
			if (PX4_ISFINITE(_setpoint.vz) && (fabsf(_setpoint.vz) > FLT_EPSILON)
			    && PX4_ISFINITE(local_pos.z_deriv) && local_pos.z_valid && local_pos.v_z_valid) {
				// A change in velocity is demanded. Set velocity to the derivative of position
				// because it has less bias but blend it in across the landing speed range
				//  <  MPC_LAND_SPEED: ramp up using altitude derivative without a step
				//  >= MPC_LAND_SPEED: use altitude derivative
				float weighting = fminf(fabsf(_setpoint.vz) / _param_mpc_land_speed.get(), 1.f);
				states.velocity(2) = local_pos.z_deriv * weighting + local_pos.vz * (1.f - weighting);
			}

			_control.setState(states);

			// Run position control
			if (_control.update(dt)) {
				_failsafe_land_hysteresis.set_state_and_update(false, time_stamp_now);

			} else {
				// Failsafe
				if ((time_stamp_now - _last_warn) > 2_s) {
					PX4_WARN("invalid setpoints");
					_last_warn = time_stamp_now;
				}

				vehicle_local_position_setpoint_s failsafe_setpoint{};

				failsafe(time_stamp_now, failsafe_setpoint, states, !was_in_failsafe);

				// reset constraints
				_vehicle_constraints = {0, NAN, NAN, NAN, false, {}};

				_control.setInputSetpoint(failsafe_setpoint);
				_control.setVelocityLimits(_param_mpc_xy_vel_max.get(), _param_mpc_z_vel_max_up.get(), _param_mpc_z_vel_max_dn.get());
				_control.update(dt);
			}

			// Publish internal position control setpoints
			// on top of the input/feed-forward setpoints these containt the PID corrections
			// This message is used by other modules (such as Landdetector) to determine vehicle intention.
			vehicle_local_position_setpoint_s local_pos_sp{};
			_control.getLocalPositionSetpoint(local_pos_sp);
			local_pos_sp.timestamp = hrt_absolute_time();
			_local_pos_sp_pub.publish(local_pos_sp);

			// Publish attitude setpoint output
			vehicle_attitude_setpoint_s attitude_setpoint{};
			_control.getAttitudeSetpoint(attitude_setpoint);
			attitude_setpoint.timestamp = hrt_absolute_time();
			_vehicle_attitude_setpoint_pub.publish(attitude_setpoint);

		} else {
			// an update is necessary here because otherwise the takeoff state doesn't get skiped with non-altitude-controlled modes
			_takeoff.updateTakeoffState(_control_mode.flag_armed, _vehicle_land_detected.landed, false, 10.f, true, time_stamp_now);
		}

		// Publish takeoff status
		const uint8_t takeoff_state = static_cast<uint8_t>(_takeoff.getTakeoffState());

		if (takeoff_state != _old_takeoff_state) {
			takeoff_status_s takeoff_status{};
			takeoff_status.takeoff_state = takeoff_state;
			takeoff_status.timestamp = hrt_absolute_time();
			_takeoff_status_pub.publish(takeoff_status);

			_old_takeoff_state = takeoff_state;
		}

		// save latest reset counters
		_vxy_reset_counter = local_pos.vxy_reset_counter;
		_vz_reset_counter = local_pos.vz_reset_counter;
		_xy_reset_counter = local_pos.xy_reset_counter;
		_z_reset_counter = local_pos.z_reset_counter;
		_heading_reset_counter = local_pos.heading_reset_counter;
	}

	perf_end(_cycle_perf);
}

void MulticopterPositionControl::failsafe(const hrt_abstime &now, vehicle_local_position_setpoint_s &setpoint,
		const PositionControlStates &states, bool warn)
{
	// do not warn while we are disarmed, as we might not have valid setpoints yet
	if (!_control_mode.flag_armed) {
		warn = false;
	}

	// Only react after a short delay
	_failsafe_land_hysteresis.set_state_and_update(true, now);

	if (_failsafe_land_hysteresis.get_state()) {
		reset_setpoint_to_nan(setpoint);

		if (PX4_ISFINITE(states.velocity(0)) && PX4_ISFINITE(states.velocity(1))) {
			// don't move along xy
			setpoint.vx = setpoint.vy = 0.f;

			if (warn) {
				PX4_WARN("Failsafe: stop and wait");
			}

		} else {
			// descend with land speed since we can't stop
			setpoint.acceleration[0] = setpoint.acceleration[1] = 0.f;
			setpoint.vz = _param_mpc_land_speed.get();

			if (warn) {
				PX4_WARN("Failsafe: blind land");
			}
		}

		if (PX4_ISFINITE(states.velocity(2))) {
			// don't move along z if we can stop in all dimensions
			if (!PX4_ISFINITE(setpoint.vz)) {
				setpoint.vz = 0.f;
			}

		} else {
			// emergency descend with a bit below hover thrust
			setpoint.vz = NAN;
			setpoint.acceleration[2] = .3f;

			if (warn) {
				PX4_WARN("Failsafe: blind descend");
			}
		}

		_in_failsafe = true;
	}
}

void MulticopterPositionControl::reset_setpoint_to_nan(vehicle_local_position_setpoint_s &setpoint)
{
	setpoint.x = setpoint.y = setpoint.z = NAN;
	setpoint.vx = setpoint.vy = setpoint.vz = NAN;
	setpoint.yaw = setpoint.yawspeed = NAN;
	setpoint.acceleration[0] = setpoint.acceleration[1] = setpoint.acceleration[2] = NAN;
	setpoint.thrust[0] = setpoint.thrust[1] = setpoint.thrust[2] = NAN;
}

int MulticopterPositionControl::task_spawn(int argc, char *argv[])
{
	bool vtol = false;

	if (argc > 1) {
		if (strcmp(argv[1], "vtol") == 0) {
			vtol = true;
		}
	}

	MulticopterPositionControl *instance = new MulticopterPositionControl(vtol);

	if (instance) {
		_object.store(instance);
		_task_id = task_id_is_work_queue;

		if (instance->init()) {
			return PX4_OK;
		}

	} else {
		PX4_ERR("alloc failed");
	}

	delete instance;
	_object.store(nullptr);
	_task_id = -1;

	return PX4_ERROR;
}

int MulticopterPositionControl::custom_command(int argc, char *argv[])
{
	return print_usage("unknown command");
}

int MulticopterPositionControl::print_usage(const char *reason)
{
	if (reason) {
		PX4_WARN("%s\n", reason);
	}

	PRINT_MODULE_DESCRIPTION(
		R"DESCR_STR(
### Description
The controller has two loops: a P loop for position error and a PID loop for velocity error.
Output of the velocity controller is thrust vector that is split to thrust direction
(i.e. rotation matrix for multicopter orientation) and thrust scalar (i.e. multicopter thrust itself).

The controller doesn't use Euler angles for its work, they are generated only for more human-friendly control and
logging.
)DESCR_STR");

	PRINT_MODULE_USAGE_NAME("mc_pos_control", "controller");
	PRINT_MODULE_USAGE_COMMAND("start");
	PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
	PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

	return 0;
}

extern "C" __EXPORT int mc_pos_control_main(int argc, char *argv[])
{
	return MulticopterPositionControl::main(argc, argv);
}