FixedwingAttitudeControl.cpp
26.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/****************************************************************************
*
* Copyright (c) 2013-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "FixedwingAttitudeControl.hpp"
#include <vtol_att_control/vtol_type.h>
using namespace time_literals;
using math::constrain;
using math::gradual;
using math::radians;
FixedwingAttitudeControl::FixedwingAttitudeControl(bool vtol) :
ModuleParams(nullptr),
WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
_actuators_0_pub(vtol ? ORB_ID(actuator_controls_virtual_fw) : ORB_ID(actuator_controls_0)),
_attitude_sp_pub(vtol ? ORB_ID(fw_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle"))
{
// check if VTOL first
if (vtol) {
int32_t vt_type = -1;
if (param_get(param_find("VT_TYPE"), &vt_type) == PX4_OK) {
_is_tailsitter = (static_cast<vtol_type>(vt_type) == vtol_type::TAILSITTER);
}
}
/* fetch initial parameter values */
parameters_update();
// set initial maximum body rate setpoints
_roll_ctrl.set_max_rate(radians(_param_fw_acro_x_max.get()));
_pitch_ctrl.set_max_rate_pos(radians(_param_fw_acro_y_max.get()));
_pitch_ctrl.set_max_rate_neg(radians(_param_fw_acro_y_max.get()));
_yaw_ctrl.set_max_rate(radians(_param_fw_acro_z_max.get()));
}
FixedwingAttitudeControl::~FixedwingAttitudeControl()
{
perf_free(_loop_perf);
}
bool
FixedwingAttitudeControl::init()
{
if (!_att_sub.registerCallback()) {
PX4_ERR("vehicle attitude callback registration failed!");
return false;
}
return true;
}
int
FixedwingAttitudeControl::parameters_update()
{
/* pitch control parameters */
_pitch_ctrl.set_time_constant(_param_fw_p_tc.get());
_pitch_ctrl.set_k_p(_param_fw_pr_p.get());
_pitch_ctrl.set_k_i(_param_fw_pr_i.get());
_pitch_ctrl.set_k_ff(_param_fw_pr_ff.get());
_pitch_ctrl.set_integrator_max(_param_fw_pr_imax.get());
/* roll control parameters */
_roll_ctrl.set_time_constant(_param_fw_r_tc.get());
_roll_ctrl.set_k_p(_param_fw_rr_p.get());
_roll_ctrl.set_k_i(_param_fw_rr_i.get());
_roll_ctrl.set_k_ff(_param_fw_rr_ff.get());
_roll_ctrl.set_integrator_max(_param_fw_rr_imax.get());
/* yaw control parameters */
_yaw_ctrl.set_k_p(_param_fw_yr_p.get());
_yaw_ctrl.set_k_i(_param_fw_yr_i.get());
_yaw_ctrl.set_k_ff(_param_fw_yr_ff.get());
_yaw_ctrl.set_integrator_max(_param_fw_yr_imax.get());
/* wheel control parameters */
_wheel_ctrl.set_k_p(_param_fw_wr_p.get());
_wheel_ctrl.set_k_i(_param_fw_wr_i.get());
_wheel_ctrl.set_k_ff(_param_fw_wr_ff.get());
_wheel_ctrl.set_integrator_max(_param_fw_wr_imax.get());
_wheel_ctrl.set_max_rate(radians(_param_fw_w_rmax.get()));
return PX4_OK;
}
void
FixedwingAttitudeControl::vehicle_control_mode_poll()
{
_vcontrol_mode_sub.update(&_vcontrol_mode);
if (_vehicle_status.is_vtol) {
const bool is_hovering = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
&& !_vehicle_status.in_transition_mode;
const bool is_tailsitter_transition = _vehicle_status.in_transition_mode && _is_tailsitter;
if (is_hovering || is_tailsitter_transition) {
_vcontrol_mode.flag_control_attitude_enabled = false;
_vcontrol_mode.flag_control_manual_enabled = false;
}
}
}
void
FixedwingAttitudeControl::vehicle_manual_poll()
{
const bool is_tailsitter_transition = _is_tailsitter && _vehicle_status.in_transition_mode;
const bool is_fixed_wing = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING;
if (_vcontrol_mode.flag_control_manual_enabled && (!is_tailsitter_transition || is_fixed_wing)) {
// Always copy the new manual setpoint, even if it wasn't updated, to fill the _actuators with valid values
if (_manual_control_setpoint_sub.copy(&_manual_control_setpoint)) {
if (!_vcontrol_mode.flag_control_climb_rate_enabled) {
if (_vcontrol_mode.flag_control_attitude_enabled) {
// STABILIZED mode generate the attitude setpoint from manual user inputs
_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
_att_sp.pitch_body = -_manual_control_setpoint.x * radians(_param_fw_man_p_max.get())
+ radians(_param_fw_psp_off.get());
_att_sp.pitch_body = constrain(_att_sp.pitch_body,
-radians(_param_fw_man_p_max.get()), radians(_param_fw_man_p_max.get()));
_att_sp.yaw_body = 0.0f;
_att_sp.thrust_body[0] = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);
Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
q.copyTo(_att_sp.q_d);
_att_sp.timestamp = hrt_absolute_time();
_attitude_sp_pub.publish(_att_sp);
} else if (_vcontrol_mode.flag_control_rates_enabled &&
!_vcontrol_mode.flag_control_attitude_enabled) {
// RATE mode we need to generate the rate setpoint from manual user inputs
_rates_sp.timestamp = hrt_absolute_time();
_rates_sp.roll = _manual_control_setpoint.y * radians(_param_fw_acro_x_max.get());
_rates_sp.pitch = -_manual_control_setpoint.x * radians(_param_fw_acro_y_max.get());
_rates_sp.yaw = _manual_control_setpoint.r * radians(_param_fw_acro_z_max.get());
_rates_sp.thrust_body[0] = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);
_rate_sp_pub.publish(_rates_sp);
} else {
/* manual/direct control */
_actuators.control[actuator_controls_s::INDEX_ROLL] =
_manual_control_setpoint.y * _param_fw_man_r_sc.get() + _param_trim_roll.get();
_actuators.control[actuator_controls_s::INDEX_PITCH] =
-_manual_control_setpoint.x * _param_fw_man_p_sc.get() + _param_trim_pitch.get();
_actuators.control[actuator_controls_s::INDEX_YAW] =
_manual_control_setpoint.r * _param_fw_man_y_sc.get() + _param_trim_yaw.get();
_actuators.control[actuator_controls_s::INDEX_THROTTLE] = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);
}
}
}
}
}
void
FixedwingAttitudeControl::vehicle_attitude_setpoint_poll()
{
if (_att_sp_sub.update(&_att_sp)) {
_rates_sp.thrust_body[0] = _att_sp.thrust_body[0];
_rates_sp.thrust_body[1] = _att_sp.thrust_body[1];
_rates_sp.thrust_body[2] = _att_sp.thrust_body[2];
}
}
void
FixedwingAttitudeControl::vehicle_rates_setpoint_poll()
{
if (_rates_sp_sub.update(&_rates_sp)) {
if (_is_tailsitter) {
float tmp = _rates_sp.roll;
_rates_sp.roll = -_rates_sp.yaw;
_rates_sp.yaw = tmp;
}
}
}
void
FixedwingAttitudeControl::vehicle_land_detected_poll()
{
if (_vehicle_land_detected_sub.updated()) {
vehicle_land_detected_s vehicle_land_detected {};
if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) {
_landed = vehicle_land_detected.landed;
}
}
}
float FixedwingAttitudeControl::get_airspeed_and_update_scaling()
{
_airspeed_validated_sub.update();
const bool airspeed_valid = PX4_ISFINITE(_airspeed_validated_sub.get().calibrated_airspeed_m_s)
&& (hrt_elapsed_time(&_airspeed_validated_sub.get().timestamp) < 1_s);
// if no airspeed measurement is available out best guess is to use the trim airspeed
float airspeed = _param_fw_airspd_trim.get();
if ((_param_fw_arsp_mode.get() == 0) && airspeed_valid) {
/* prevent numerical drama by requiring 0.5 m/s minimal speed */
airspeed = math::max(0.5f, _airspeed_validated_sub.get().calibrated_airspeed_m_s);
} else {
// VTOL: if we have no airspeed available and we are in hover mode then assume the lowest airspeed possible
// this assumption is good as long as the vehicle is not hovering in a headwind which is much larger
// than the minimum airspeed
if (_vehicle_status.is_vtol && _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
&& !_vehicle_status.in_transition_mode) {
airspeed = _param_fw_airspd_min.get();
}
}
/*
* For scaling our actuators using anything less than the min (close to stall)
* speed doesn't make any sense - its the strongest reasonable deflection we
* want to do in flight and its the baseline a human pilot would choose.
*
* Forcing the scaling to this value allows reasonable handheld tests.
*/
const float airspeed_constrained = constrain(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_max.get());
_airspeed_scaling = (_param_fw_arsp_scale_en.get()) ? (_param_fw_airspd_trim.get() / airspeed_constrained) : 1.0f;
return airspeed;
}
void FixedwingAttitudeControl::Run()
{
if (should_exit()) {
_att_sub.unregisterCallback();
exit_and_cleanup();
return;
}
perf_begin(_loop_perf);
// only run controller if attitude changed
vehicle_attitude_s att;
if (_att_sub.update(&att)) {
// only update parameters if they changed
bool params_updated = _parameter_update_sub.updated();
// check for parameter updates
if (params_updated) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
parameters_update();
}
const float dt = math::constrain((att.timestamp - _last_run) * 1e-6f, 0.002f, 0.04f);
_last_run = att.timestamp;
/* get current rotation matrix and euler angles from control state quaternions */
matrix::Dcmf R = matrix::Quatf(att.q);
vehicle_angular_velocity_s angular_velocity{};
_vehicle_rates_sub.copy(&angular_velocity);
float rollspeed = angular_velocity.xyz[0];
float pitchspeed = angular_velocity.xyz[1];
float yawspeed = angular_velocity.xyz[2];
if (_is_tailsitter) {
/* vehicle is a tailsitter, we need to modify the estimated attitude for fw mode
*
* Since the VTOL airframe is initialized as a multicopter we need to
* modify the estimated attitude for the fixed wing operation.
* Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around
* the pitch axis compared to the neutral position of the vehicle in multicopter mode
* we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix.
* Additionally, in order to get the correct sign of the pitch, we need to multiply
* the new x axis of the rotation matrix with -1
*
* original: modified:
*
* Rxx Ryx Rzx -Rzx Ryx Rxx
* Rxy Ryy Rzy -Rzy Ryy Rxy
* Rxz Ryz Rzz -Rzz Ryz Rxz
* */
matrix::Dcmf R_adapted = R; //modified rotation matrix
/* move z to x */
R_adapted(0, 0) = R(0, 2);
R_adapted(1, 0) = R(1, 2);
R_adapted(2, 0) = R(2, 2);
/* move x to z */
R_adapted(0, 2) = R(0, 0);
R_adapted(1, 2) = R(1, 0);
R_adapted(2, 2) = R(2, 0);
/* change direction of pitch (convert to right handed system) */
R_adapted(0, 0) = -R_adapted(0, 0);
R_adapted(1, 0) = -R_adapted(1, 0);
R_adapted(2, 0) = -R_adapted(2, 0);
/* fill in new attitude data */
R = R_adapted;
/* lastly, roll- and yawspeed have to be swaped */
float helper = rollspeed;
rollspeed = -yawspeed;
yawspeed = helper;
}
const matrix::Eulerf euler_angles(R);
vehicle_attitude_setpoint_poll();
// vehicle status update must be before the vehicle_control_mode_poll(), otherwise rate sp are not published during whole transition
_vehicle_status_sub.update(&_vehicle_status);
vehicle_control_mode_poll();
vehicle_manual_poll();
vehicle_land_detected_poll();
// the position controller will not emit attitude setpoints in some modes
// we need to make sure that this flag is reset
_att_sp.fw_control_yaw = _att_sp.fw_control_yaw && _vcontrol_mode.flag_control_auto_enabled;
bool wheel_control = false;
// TODO: manual wheel_control on ground?
if (_param_fw_w_en.get() && _att_sp.fw_control_yaw) {
wheel_control = true;
}
// lock integrator if no rate control enabled, or in RW mode (but not transitioning VTOL or tailsitter), or for long intervals (> 20 ms)
bool lock_integrator = !_vcontrol_mode.flag_control_rates_enabled
|| (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING &&
!_vehicle_status.in_transition_mode && !_is_tailsitter)
|| (dt > 0.02f);
/* if we are in rotary wing mode, do nothing */
if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING && !_vehicle_status.is_vtol) {
perf_end(_loop_perf);
return;
}
control_flaps(dt);
/* decide if in stabilized or full manual control */
if (_vcontrol_mode.flag_control_rates_enabled) {
const float airspeed = get_airspeed_and_update_scaling();
/* reset integrals where needed */
if (_att_sp.roll_reset_integral) {
_roll_ctrl.reset_integrator();
}
if (_att_sp.pitch_reset_integral) {
_pitch_ctrl.reset_integrator();
}
if (_att_sp.yaw_reset_integral) {
_yaw_ctrl.reset_integrator();
_wheel_ctrl.reset_integrator();
}
/* Reset integrators if the aircraft is on ground
* or a multicopter (but not transitioning VTOL or tailsitter)
*/
if (_landed
|| (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
&& !_vehicle_status.in_transition_mode && !_is_tailsitter)) {
_roll_ctrl.reset_integrator();
_pitch_ctrl.reset_integrator();
_yaw_ctrl.reset_integrator();
_wheel_ctrl.reset_integrator();
}
/* Prepare data for attitude controllers */
ECL_ControlData control_input{};
control_input.roll = euler_angles.phi();
control_input.pitch = euler_angles.theta();
control_input.yaw = euler_angles.psi();
control_input.body_x_rate = rollspeed;
control_input.body_y_rate = pitchspeed;
control_input.body_z_rate = yawspeed;
control_input.roll_setpoint = _att_sp.roll_body;
control_input.pitch_setpoint = _att_sp.pitch_body;
control_input.yaw_setpoint = _att_sp.yaw_body;
control_input.airspeed_min = _param_fw_airspd_min.get();
control_input.airspeed_max = _param_fw_airspd_max.get();
control_input.airspeed = airspeed;
control_input.scaler = _airspeed_scaling;
control_input.lock_integrator = lock_integrator;
if (wheel_control) {
_local_pos_sub.update(&_local_pos);
/* Use min airspeed to calculate ground speed scaling region.
* Don't scale below gspd_scaling_trim
*/
float groundspeed = sqrtf(_local_pos.vx * _local_pos.vx + _local_pos.vy * _local_pos.vy);
float gspd_scaling_trim = (_param_fw_airspd_min.get() * 0.6f);
control_input.groundspeed = groundspeed;
if (groundspeed > gspd_scaling_trim) {
control_input.groundspeed_scaler = gspd_scaling_trim / groundspeed;
} else {
control_input.groundspeed_scaler = 1.0f;
}
}
/* reset body angular rate limits on mode change */
if ((_vcontrol_mode.flag_control_attitude_enabled != _flag_control_attitude_enabled_last) || params_updated) {
if (_vcontrol_mode.flag_control_attitude_enabled
|| _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
_roll_ctrl.set_max_rate(radians(_param_fw_r_rmax.get()));
_pitch_ctrl.set_max_rate_pos(radians(_param_fw_p_rmax_pos.get()));
_pitch_ctrl.set_max_rate_neg(radians(_param_fw_p_rmax_neg.get()));
_yaw_ctrl.set_max_rate(radians(_param_fw_y_rmax.get()));
} else {
_roll_ctrl.set_max_rate(radians(_param_fw_acro_x_max.get()));
_pitch_ctrl.set_max_rate_pos(radians(_param_fw_acro_y_max.get()));
_pitch_ctrl.set_max_rate_neg(radians(_param_fw_acro_y_max.get()));
_yaw_ctrl.set_max_rate(radians(_param_fw_acro_z_max.get()));
}
}
_flag_control_attitude_enabled_last = _vcontrol_mode.flag_control_attitude_enabled;
/* bi-linear interpolation over airspeed for actuator trim scheduling */
float trim_roll = _param_trim_roll.get();
float trim_pitch = _param_trim_pitch.get();
float trim_yaw = _param_trim_yaw.get();
if (airspeed < _param_fw_airspd_trim.get()) {
trim_roll += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_r_vmin.get(),
0.0f);
trim_pitch += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_p_vmin.get(),
0.0f);
trim_yaw += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_y_vmin.get(),
0.0f);
} else {
trim_roll += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
_param_fw_dtrim_r_vmax.get());
trim_pitch += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
_param_fw_dtrim_p_vmax.get());
trim_yaw += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
_param_fw_dtrim_y_vmax.get());
}
/* add trim increment if flaps are deployed */
trim_roll += _flaps_applied * _param_fw_dtrim_r_flps.get();
trim_pitch += _flaps_applied * _param_fw_dtrim_p_flps.get();
/* Run attitude controllers */
if (_vcontrol_mode.flag_control_attitude_enabled) {
if (PX4_ISFINITE(_att_sp.roll_body) && PX4_ISFINITE(_att_sp.pitch_body)) {
_roll_ctrl.control_attitude(dt, control_input);
_pitch_ctrl.control_attitude(dt, control_input);
if (wheel_control) {
_wheel_ctrl.control_attitude(dt, control_input);
_yaw_ctrl.reset_integrator();
} else {
// runs last, because is depending on output of roll and pitch attitude
_yaw_ctrl.control_attitude(dt, control_input);
_wheel_ctrl.reset_integrator();
}
/* Update input data for rate controllers */
control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate();
control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate();
control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate();
/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
float roll_u = _roll_ctrl.control_euler_rate(dt, control_input);
_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + trim_roll : trim_roll;
if (!PX4_ISFINITE(roll_u)) {
_roll_ctrl.reset_integrator();
}
float pitch_u = _pitch_ctrl.control_euler_rate(dt, control_input);
_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + trim_pitch : trim_pitch;
if (!PX4_ISFINITE(pitch_u)) {
_pitch_ctrl.reset_integrator();
}
float yaw_u = 0.0f;
if (wheel_control) {
yaw_u = _wheel_ctrl.control_bodyrate(dt, control_input);
} else {
yaw_u = _yaw_ctrl.control_euler_rate(dt, control_input);
}
_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + trim_yaw : trim_yaw;
/* add in manual rudder control in manual modes */
if (_vcontrol_mode.flag_control_manual_enabled) {
_actuators.control[actuator_controls_s::INDEX_YAW] += _manual_control_setpoint.r;
}
if (!PX4_ISFINITE(yaw_u)) {
_yaw_ctrl.reset_integrator();
_wheel_ctrl.reset_integrator();
}
/* throttle passed through if it is finite and if no engine failure was detected */
_actuators.control[actuator_controls_s::INDEX_THROTTLE] = (PX4_ISFINITE(_att_sp.thrust_body[0])
&& !_vehicle_status.engine_failure) ? _att_sp.thrust_body[0] : 0.0f;
/* scale effort by battery status */
if (_param_fw_bat_scale_en.get() &&
_actuators.control[actuator_controls_s::INDEX_THROTTLE] > 0.1f) {
if (_battery_status_sub.updated()) {
battery_status_s battery_status{};
if (_battery_status_sub.copy(&battery_status)) {
if (battery_status.scale > 0.0f) {
_battery_scale = battery_status.scale;
}
}
}
_actuators.control[actuator_controls_s::INDEX_THROTTLE] *= _battery_scale;
}
}
/*
* Lazily publish the rate setpoint (for analysis, the actuators are published below)
* only once available
*/
_rates_sp.roll = _roll_ctrl.get_desired_bodyrate();
_rates_sp.pitch = _pitch_ctrl.get_desired_bodyrate();
_rates_sp.yaw = _yaw_ctrl.get_desired_bodyrate();
_rates_sp.timestamp = hrt_absolute_time();
_rate_sp_pub.publish(_rates_sp);
} else {
vehicle_rates_setpoint_poll();
_roll_ctrl.set_bodyrate_setpoint(_rates_sp.roll);
_yaw_ctrl.set_bodyrate_setpoint(_rates_sp.yaw);
_pitch_ctrl.set_bodyrate_setpoint(_rates_sp.pitch);
float roll_u = _roll_ctrl.control_bodyrate(dt, control_input);
_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + trim_roll : trim_roll;
float pitch_u = _pitch_ctrl.control_bodyrate(dt, control_input);
_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + trim_pitch : trim_pitch;
float yaw_u = _yaw_ctrl.control_bodyrate(dt, control_input);
_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + trim_yaw : trim_yaw;
_actuators.control[actuator_controls_s::INDEX_THROTTLE] = PX4_ISFINITE(_rates_sp.thrust_body[0]) ?
_rates_sp.thrust_body[0] : 0.0f;
}
rate_ctrl_status_s rate_ctrl_status{};
rate_ctrl_status.timestamp = hrt_absolute_time();
rate_ctrl_status.rollspeed_integ = _roll_ctrl.get_integrator();
rate_ctrl_status.pitchspeed_integ = _pitch_ctrl.get_integrator();
if (wheel_control) {
rate_ctrl_status.additional_integ1 = _wheel_ctrl.get_integrator();
} else {
rate_ctrl_status.yawspeed_integ = _yaw_ctrl.get_integrator();
}
_rate_ctrl_status_pub.publish(rate_ctrl_status);
}
// Add feed-forward from roll control output to yaw control output
// This can be used to counteract the adverse yaw effect when rolling the plane
_actuators.control[actuator_controls_s::INDEX_YAW] += _param_fw_rll_to_yaw_ff.get()
* constrain(_actuators.control[actuator_controls_s::INDEX_ROLL], -1.0f, 1.0f);
_actuators.control[actuator_controls_s::INDEX_FLAPS] = _flaps_applied;
_actuators.control[5] = _manual_control_setpoint.aux1;
_actuators.control[actuator_controls_s::INDEX_AIRBRAKES] = _flaperons_applied;
// FIXME: this should use _vcontrol_mode.landing_gear_pos in the future
_actuators.control[7] = _manual_control_setpoint.aux3;
/* lazily publish the setpoint only once available */
_actuators.timestamp = hrt_absolute_time();
_actuators.timestamp_sample = att.timestamp;
/* Only publish if any of the proper modes are enabled */
if (_vcontrol_mode.flag_control_rates_enabled ||
_vcontrol_mode.flag_control_attitude_enabled ||
_vcontrol_mode.flag_control_manual_enabled) {
_actuators_0_pub.publish(_actuators);
}
}
perf_end(_loop_perf);
}
void FixedwingAttitudeControl::control_flaps(const float dt)
{
/* default flaps to center */
float flap_control = 0.0f;
/* map flaps by default to manual if valid */
if (PX4_ISFINITE(_manual_control_setpoint.flaps) && _vcontrol_mode.flag_control_manual_enabled
&& fabsf(_param_fw_flaps_scl.get()) > 0.01f) {
flap_control = 0.5f * (_manual_control_setpoint.flaps + 1.0f) * _param_fw_flaps_scl.get();
} else if (_vcontrol_mode.flag_control_auto_enabled
&& fabsf(_param_fw_flaps_scl.get()) > 0.01f) {
switch (_att_sp.apply_flaps) {
case vehicle_attitude_setpoint_s::FLAPS_OFF:
flap_control = 0.0f; // no flaps
break;
case vehicle_attitude_setpoint_s::FLAPS_LAND:
flap_control = 1.0f * _param_fw_flaps_scl.get() * _param_fw_flaps_lnd_scl.get();
break;
case vehicle_attitude_setpoint_s::FLAPS_TAKEOFF:
flap_control = 1.0f * _param_fw_flaps_scl.get() * _param_fw_flaps_to_scl.get();
break;
}
}
// move the actual control value continuous with time, full flap travel in 1sec
if (fabsf(_flaps_applied - flap_control) > 0.01f) {
_flaps_applied += (_flaps_applied - flap_control) < 0 ? dt : -dt;
} else {
_flaps_applied = flap_control;
}
/* default flaperon to center */
float flaperon_control = 0.0f;
/* map flaperons by default to manual if valid */
if (PX4_ISFINITE(_manual_control_setpoint.aux2) && _vcontrol_mode.flag_control_manual_enabled
&& fabsf(_param_fw_flaperon_scl.get()) > 0.01f) {
flaperon_control = 0.5f * (_manual_control_setpoint.aux2 + 1.0f) * _param_fw_flaperon_scl.get();
} else if (_vcontrol_mode.flag_control_auto_enabled
&& fabsf(_param_fw_flaperon_scl.get()) > 0.01f) {
if (_att_sp.apply_flaps == vehicle_attitude_setpoint_s::FLAPS_LAND) {
flaperon_control = _param_fw_flaperon_scl.get();
} else {
flaperon_control = 0.0f;
}
}
// move the actual control value continuous with time, full flap travel in 1sec
if (fabsf(_flaperons_applied - flaperon_control) > 0.01f) {
_flaperons_applied += (_flaperons_applied - flaperon_control) < 0 ? dt : -dt;
} else {
_flaperons_applied = flaperon_control;
}
}
int FixedwingAttitudeControl::task_spawn(int argc, char *argv[])
{
bool vtol = false;
if (argc > 1) {
if (strcmp(argv[1], "vtol") == 0) {
vtol = true;
}
}
FixedwingAttitudeControl *instance = new FixedwingAttitudeControl(vtol);
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int FixedwingAttitudeControl::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int FixedwingAttitudeControl::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
fw_att_control is the fixed wing attitude controller.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("fw_att_control", "controller");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[])
{
return FixedwingAttitudeControl::main(argc, argv);
}