mag_calibration.cpp
34.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/****************************************************************************
*
* Copyright (c) 2013-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mag_calibration.cpp
*
* Magnetometer calibration routine
*/
#include "mag_calibration.h"
#include "commander_helper.h"
#include "calibration_routines.h"
#include "lm_fit.hpp"
#include "calibration_messages.h"
#include "factory_calibration_storage.h"
#include <px4_platform_common/defines.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/time.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_tone_alarm.h>
#include <matrix/math.hpp>
#include <lib/sensor_calibration/Magnetometer.hpp>
#include <lib/sensor_calibration/Utilities.hpp>
#include <lib/conversion/rotation.h>
#include <lib/ecl/geo_lookup/geo_mag_declination.h>
#include <lib/systemlib/mavlink_log.h>
#include <lib/parameters/param.h>
#include <lib/systemlib/err.h>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionBlocking.hpp>
#include <uORB/SubscriptionMultiArray.hpp>
#include <uORB/topics/sensor_mag.h>
#include <uORB/topics/sensor_gyro.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/mag_worker_data.h>
using namespace matrix;
using namespace time_literals;
static constexpr char sensor_name[] {"mag"};
static constexpr int MAX_MAGS = 4;
static constexpr float MAG_SPHERE_RADIUS_DEFAULT = 0.2f;
static constexpr unsigned int calibration_total_points = 240; ///< The total points per magnetometer
static constexpr unsigned int calibraton_duration_s = 42; ///< The total duration the routine is allowed to take
calibrate_return mag_calibrate_all(orb_advert_t *mavlink_log_pub, int32_t cal_mask);
/// Data passed to calibration worker routine
struct mag_worker_data_t {
orb_advert_t *mavlink_log_pub;
orb_advert_t mag_worker_data_pub;
bool append_to_existing_calibration;
unsigned last_mag_progress;
unsigned done_count;
unsigned calibration_sides; ///< The total number of sides
bool side_data_collected[detect_orientation_side_count];
unsigned int calibration_points_perside;
uint64_t calibration_interval_perside_us;
unsigned int calibration_counter_total[MAX_MAGS];
float *x[MAX_MAGS];
float *y[MAX_MAGS];
float *z[MAX_MAGS];
calibration::Magnetometer calibration[MAX_MAGS] {};
};
int do_mag_calibration(orb_advert_t *mavlink_log_pub)
{
calibration_log_info(mavlink_log_pub, CAL_QGC_STARTED_MSG, sensor_name);
int result = PX4_OK;
// Collect: As defined by configuration
// start with a full mask, all six bits set
int32_t cal_mask = (1 << 6) - 1;
param_get(param_find("CAL_MAG_SIDES"), &cal_mask);
// Calibrate all mags at the same time
if (result == PX4_OK) {
switch (mag_calibrate_all(mavlink_log_pub, cal_mask)) {
case calibrate_return_cancelled:
// Cancel message already displayed, we're done here
result = PX4_ERROR;
break;
case calibrate_return_ok:
/* if there is a any preflight-check system response, let the barrage of messages through */
px4_usleep(200000);
calibration_log_info(mavlink_log_pub, CAL_QGC_PROGRESS_MSG, 100);
px4_usleep(20000);
calibration_log_info(mavlink_log_pub, CAL_QGC_DONE_MSG, sensor_name);
px4_usleep(20000);
break;
default:
calibration_log_critical(mavlink_log_pub, CAL_QGC_FAILED_MSG, sensor_name);
px4_usleep(20000);
break;
}
}
/* give this message enough time to propagate */
px4_usleep(600000);
return result;
}
static bool reject_sample(float sx, float sy, float sz, float x[], float y[], float z[], unsigned count,
unsigned max_count, float mag_sphere_radius)
{
float min_sample_dist = fabsf(5.4f * mag_sphere_radius / sqrtf(max_count)) / 3.0f;
for (size_t i = 0; i < count; i++) {
float dx = sx - x[i];
float dy = sy - y[i];
float dz = sz - z[i];
float dist = sqrtf(dx * dx + dy * dy + dz * dz);
if (dist < min_sample_dist) {
PX4_DEBUG("rejected X: %.3f Y: %.3f Z: %.3f (%.3f < %.3f) (%d/%d) ", (double)sx, (double)sy, (double)sz, (double)dist,
(double)min_sample_dist, count, max_count);
return true;
}
}
return false;
}
static unsigned progress_percentage(mag_worker_data_t *worker_data)
{
return 100 * ((float)worker_data->done_count) / worker_data->calibration_sides;
}
// Returns calibrate_return_error if any parameter is not finite
// Logs if parameters are out of range
static calibrate_return check_calibration_result(float offset_x, float offset_y, float offset_z,
float sphere_radius,
float diag_x, float diag_y, float diag_z,
float offdiag_x, float offdiag_y, float offdiag_z,
orb_advert_t *mavlink_log_pub, uint8_t cur_mag)
{
float must_be_finite[] = {offset_x, offset_y, offset_z,
sphere_radius,
diag_x, diag_y, diag_z,
offdiag_x, offdiag_y, offdiag_z
};
float should_be_not_huge[] = {offset_x, offset_y, offset_z};
float should_be_positive[] = {sphere_radius, diag_x, diag_y, diag_z};
// Make sure every parameter is finite
const int num_finite = sizeof(must_be_finite) / sizeof(*must_be_finite);
for (unsigned i = 0; i < num_finite; ++i) {
if (!PX4_ISFINITE(must_be_finite[i])) {
calibration_log_emergency(mavlink_log_pub, "Retry calibration (sphere NaN, %u)", cur_mag);
return calibrate_return_error;
}
}
// earth field between 0.25 and 0.65 Gauss
if (sphere_radius < 0.2f || sphere_radius >= 0.7f) {
calibration_log_emergency(mavlink_log_pub, "Retry calibration (mag %u sphere radius invalid %.3f)", cur_mag,
(double)sphere_radius);
return calibrate_return_error;
}
// Notify if a parameter which should be positive is non-positive
const int num_positive = sizeof(should_be_positive) / sizeof(*should_be_positive);
for (unsigned i = 0; i < num_positive; ++i) {
if (should_be_positive[i] <= 0.0f) {
calibration_log_emergency(mavlink_log_pub, "Retry calibration (mag %u with non-positive scale)", cur_mag);
return calibrate_return_error;
}
}
// Notify if offsets are too large
const int num_not_huge = sizeof(should_be_not_huge) / sizeof(*should_be_not_huge);
for (unsigned i = 0; i < num_not_huge; ++i) {
// maximum measurement range is ~1.9 Ga, the earth field is ~0.6 Ga,
// so an offset larger than ~1.3 Ga means the mag will saturate in some directions.
static constexpr float MAG_MAX_OFFSET_LEN = 1.3f;
if (fabsf(should_be_not_huge[i]) > MAG_MAX_OFFSET_LEN) {
calibration_log_critical(mavlink_log_pub, "Warning: mag %u with large offsets", cur_mag);
break;
}
}
return calibrate_return_ok;
}
static float get_sphere_radius()
{
// if GPS is available use real field intensity from world magnetic model
uORB::SubscriptionMultiArray<vehicle_gps_position_s, 3> gps_subs{ORB_ID::vehicle_gps_position};
for (auto &gps_sub : gps_subs) {
vehicle_gps_position_s gps;
if (gps_sub.copy(&gps)) {
if (hrt_elapsed_time(&gps.timestamp) < 100_s && (gps.fix_type >= 2) && (gps.eph < 1000)) {
const double lat = gps.lat / 1.e7;
const double lon = gps.lon / 1.e7;
// magnetic field data returned by the geo library using the current GPS position
return get_mag_strength_gauss(lat, lon);
}
}
}
return MAG_SPHERE_RADIUS_DEFAULT;
}
static calibrate_return mag_calibration_worker(detect_orientation_return orientation, void *data)
{
const hrt_abstime calibration_started = hrt_absolute_time();
calibrate_return result = calibrate_return_ok;
mag_worker_data_t *worker_data = (mag_worker_data_t *)(data);
float mag_sphere_radius = get_sphere_radius();
// notify user to start rotating
set_tune(tune_control_s::TUNE_ID_SINGLE_BEEP);
calibration_log_info(worker_data->mavlink_log_pub, "[cal] Rotate vehicle");
/*
* Detect if the system is rotating.
*
* We're detecting this as a general rotation on any axis, not necessary on the one we
* asked the user for. This is because we really just need two roughly orthogonal axes
* for a good result, so we're not constraining the user more than we have to.
*/
const hrt_abstime detection_deadline = hrt_absolute_time() + worker_data->calibration_interval_perside_us * 5;
hrt_abstime last_gyro = 0;
float gyro_x_integral = 0.0f;
float gyro_y_integral = 0.0f;
float gyro_z_integral = 0.0f;
static constexpr float gyro_int_thresh_rad = 0.5f;
uORB::SubscriptionBlocking<sensor_gyro_s> gyro_sub{ORB_ID(sensor_gyro)};
while (fabsf(gyro_x_integral) < gyro_int_thresh_rad &&
fabsf(gyro_y_integral) < gyro_int_thresh_rad &&
fabsf(gyro_z_integral) < gyro_int_thresh_rad) {
/* abort on request */
if (calibrate_cancel_check(worker_data->mavlink_log_pub, calibration_started)) {
result = calibrate_return_cancelled;
return result;
}
/* abort with timeout */
if (hrt_absolute_time() > detection_deadline) {
result = calibrate_return_error;
PX4_ERR("gyro int: %8.4f, %8.4f, %8.4f", (double)gyro_x_integral, (double)gyro_y_integral, (double)gyro_z_integral);
calibration_log_critical(worker_data->mavlink_log_pub, "Failed: This calibration requires rotation.");
break;
}
/* Wait clocking for new data on all gyro */
sensor_gyro_s gyro;
if (gyro_sub.updateBlocking(gyro, 1000_ms)) {
/* ensure we have a valid first timestamp */
if (last_gyro > 0) {
/* integrate */
float delta_t = (gyro.timestamp - last_gyro) / 1e6f;
gyro_x_integral += gyro.x * delta_t;
gyro_y_integral += gyro.y * delta_t;
gyro_z_integral += gyro.z * delta_t;
}
last_gyro = gyro.timestamp;
}
}
uORB::SubscriptionBlocking<sensor_mag_s> mag_sub[MAX_MAGS] {
{ORB_ID(sensor_mag), 0, 0},
{ORB_ID(sensor_mag), 0, 1},
{ORB_ID(sensor_mag), 0, 2},
{ORB_ID(sensor_mag), 0, 3},
};
uint64_t calibration_deadline = hrt_absolute_time() + worker_data->calibration_interval_perside_us;
unsigned poll_errcount = 0;
unsigned calibration_counter_side = 0;
while (hrt_absolute_time() < calibration_deadline &&
calibration_counter_side < worker_data->calibration_points_perside) {
if (calibrate_cancel_check(worker_data->mavlink_log_pub, calibration_started)) {
result = calibrate_return_cancelled;
break;
}
if (mag_sub[0].updatedBlocking(1000_ms)) {
bool rejected = false;
Vector3f new_samples[MAX_MAGS] {};
for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if (worker_data->calibration[cur_mag].device_id() != 0) {
bool updated = false;
sensor_mag_s mag;
while (mag_sub[cur_mag].update(&mag)) {
if (worker_data->append_to_existing_calibration) {
// keep and update the existing calibration when we are not doing a full 6-axis calibration
const Matrix3f &scale = worker_data->calibration[cur_mag].scale();
const Vector3f &offset = worker_data->calibration[cur_mag].offset();
const Vector3f m{scale *(Vector3f{mag.x, mag.y, mag.z} - offset)};
mag.x = m(0);
mag.y = m(1);
mag.z = m(2);
}
// Check if this measurement is good to go in
bool reject = reject_sample(mag.x, mag.y, mag.z,
worker_data->x[cur_mag], worker_data->y[cur_mag], worker_data->z[cur_mag],
worker_data->calibration_counter_total[cur_mag],
worker_data->calibration_sides * worker_data->calibration_points_perside,
mag_sphere_radius);
if (!reject) {
new_samples[cur_mag] = Vector3f{mag.x, mag.y, mag.z};
updated = true;
break;
}
}
// require an update for all valid mags
if (!updated) {
rejected = true;
}
}
}
// Keep calibration of all mags in lockstep
if (!rejected) {
for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if (worker_data->calibration[cur_mag].device_id() != 0) {
worker_data->x[cur_mag][worker_data->calibration_counter_total[cur_mag]] = new_samples[cur_mag](0);
worker_data->y[cur_mag][worker_data->calibration_counter_total[cur_mag]] = new_samples[cur_mag](1);
worker_data->z[cur_mag][worker_data->calibration_counter_total[cur_mag]] = new_samples[cur_mag](2);
worker_data->calibration_counter_total[cur_mag]++;
}
}
hrt_abstime now = hrt_absolute_time();
mag_worker_data_s status;
status.timestamp = now;
status.timestamp_sample = now;
status.done_count = worker_data->done_count;
status.calibration_points_perside = worker_data->calibration_points_perside;
status.calibration_interval_perside_us = worker_data->calibration_interval_perside_us;
for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
status.calibration_counter_total[cur_mag] = worker_data->calibration_counter_total[cur_mag];
status.side_data_collected[cur_mag] = worker_data->side_data_collected[cur_mag];
if (worker_data->calibration[cur_mag].device_id() != 0) {
const unsigned int sample = worker_data->calibration_counter_total[cur_mag] - 1;
status.x[cur_mag] = worker_data->x[cur_mag][sample];
status.y[cur_mag] = worker_data->y[cur_mag][sample];
status.z[cur_mag] = worker_data->z[cur_mag][sample];
} else {
status.x[cur_mag] = 0.f;
status.y[cur_mag] = 0.f;
status.z[cur_mag] = 0.f;
}
}
if (worker_data->mag_worker_data_pub == nullptr) {
worker_data->mag_worker_data_pub = orb_advertise(ORB_ID(mag_worker_data), &status);
} else {
orb_publish(ORB_ID(mag_worker_data), worker_data->mag_worker_data_pub, &status);
}
calibration_counter_side++;
unsigned new_progress = progress_percentage(worker_data) +
(unsigned)((100 / worker_data->calibration_sides) * ((float)calibration_counter_side / (float)
worker_data->calibration_points_perside));
if (new_progress - worker_data->last_mag_progress > 0) {
// Progress indicator for side
calibration_log_info(worker_data->mavlink_log_pub,
"[cal] %s side calibration: progress <%u>",
detect_orientation_str(orientation), new_progress);
px4_usleep(10000);
worker_data->last_mag_progress = new_progress;
}
}
PX4_DEBUG("side counter %d / %d", calibration_counter_side, worker_data->calibration_points_perside);
} else {
poll_errcount++;
}
if (poll_errcount > worker_data->calibration_points_perside * 3) {
result = calibrate_return_error;
calibration_log_info(worker_data->mavlink_log_pub, CAL_ERROR_SENSOR_MSG);
break;
}
}
if (result == calibrate_return_ok) {
calibration_log_info(worker_data->mavlink_log_pub, "[cal] %s side done, rotate to a different side",
detect_orientation_str(orientation));
worker_data->done_count++;
px4_usleep(20000);
calibration_log_info(worker_data->mavlink_log_pub, CAL_QGC_PROGRESS_MSG, progress_percentage(worker_data));
}
return result;
}
calibrate_return mag_calibrate_all(orb_advert_t *mavlink_log_pub, int32_t cal_mask)
{
calibrate_return result = calibrate_return_ok;
mag_worker_data_t worker_data{};
worker_data.mag_worker_data_pub = nullptr;
// keep and update the existing calibration when we are not doing a full 6-axis calibration
worker_data.append_to_existing_calibration = cal_mask < ((1 << 6) - 1);
worker_data.mavlink_log_pub = mavlink_log_pub;
worker_data.last_mag_progress = 0;
worker_data.calibration_sides = 0;
worker_data.done_count = 0;
worker_data.calibration_points_perside = calibration_total_points / detect_orientation_side_count;
worker_data.calibration_interval_perside_us = (calibraton_duration_s / detect_orientation_side_count) * 1000 * 1000;
for (unsigned i = 0; i < (sizeof(worker_data.side_data_collected) / sizeof(worker_data.side_data_collected[0])); i++) {
if ((cal_mask & (1 << i)) > 0) {
// mark as missing
worker_data.side_data_collected[i] = false;
worker_data.calibration_sides++;
} else {
// mark as completed from the beginning
worker_data.side_data_collected[i] = true;
calibration_log_info(mavlink_log_pub,
"[cal] %s side done, rotate to a different side",
detect_orientation_str(static_cast<enum detect_orientation_return>(i)));
px4_usleep(100000);
}
}
for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
// Initialize to no memory allocated
worker_data.x[cur_mag] = nullptr;
worker_data.y[cur_mag] = nullptr;
worker_data.z[cur_mag] = nullptr;
worker_data.calibration_counter_total[cur_mag] = 0;
}
const unsigned int calibration_points_maxcount = worker_data.calibration_sides * worker_data.calibration_points_perside;
for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
uORB::SubscriptionData<sensor_mag_s> mag_sub{ORB_ID(sensor_mag), cur_mag};
if (mag_sub.advertised() && (mag_sub.get().device_id != 0) && (mag_sub.get().timestamp > 0)) {
worker_data.calibration[cur_mag].set_device_id(mag_sub.get().device_id, mag_sub.get().is_external);
}
// reset calibration index to match uORB numbering
worker_data.calibration[cur_mag].set_calibration_index(cur_mag);
if (worker_data.calibration[cur_mag].device_id() != 0) {
worker_data.x[cur_mag] = static_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
worker_data.y[cur_mag] = static_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
worker_data.z[cur_mag] = static_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
if (worker_data.x[cur_mag] == nullptr || worker_data.y[cur_mag] == nullptr || worker_data.z[cur_mag] == nullptr) {
calibration_log_critical(mavlink_log_pub, "ERROR: out of memory");
result = calibrate_return_error;
break;
}
} else {
break;
}
}
if (result == calibrate_return_ok) {
result = calibrate_from_orientation(mavlink_log_pub, // uORB handle to write output
worker_data.side_data_collected, // Sides to calibrate
mag_calibration_worker, // Calibration worker
&worker_data, // Opaque data for calibration worked
true); // true: lenient still detection
}
// calibration values for each mag
Vector3f sphere[MAX_MAGS];
Vector3f diag[MAX_MAGS];
Vector3f offdiag[MAX_MAGS];
float sphere_radius[MAX_MAGS];
const float mag_sphere_radius = get_sphere_radius();
for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
sphere_radius[cur_mag] = mag_sphere_radius;
sphere[cur_mag].zero();
diag[cur_mag] = Vector3f{1.f, 1.f, 1.f};
offdiag[cur_mag].zero();
}
if (result == calibrate_return_ok) {
// Sphere fit the data to get calibration values
for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if (worker_data.calibration[cur_mag].device_id() != 0) {
// Mag in this slot is available and we should have values for it to calibrate
// Estimate only the offsets if two-sided calibration is selected, as the problem is not constrained
// enough to reliably estimate both scales and offsets with 2 sides only (even if the existing calibration
// is already close)
bool sphere_fit_only = worker_data.calibration_sides <= 2;
sphere_params sphere_data;
sphere_data.radius = sphere_radius[cur_mag];
sphere_data.offset = matrix::Vector3f(sphere[cur_mag](0), sphere[cur_mag](1), sphere[cur_mag](2));
sphere_data.diag = matrix::Vector3f(diag[cur_mag](0), diag[cur_mag](1), diag[cur_mag](2));
sphere_data.offdiag = matrix::Vector3f(offdiag[cur_mag](0), offdiag[cur_mag](1), offdiag[cur_mag](2));
bool sphere_fit_success = false;
bool ellipsoid_fit_success = false;
int ret = lm_mag_fit(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag],
worker_data.calibration_counter_total[cur_mag], sphere_data, false);
if (ret == PX4_OK) {
sphere_fit_success = true;
PX4_INFO("Mag: %d sphere radius: %.4f", cur_mag, (double)sphere_data.radius);
if (!sphere_fit_only) {
int ellipsoid_ret = lm_mag_fit(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag],
worker_data.calibration_counter_total[cur_mag], sphere_data, true);
if (ellipsoid_ret == PX4_OK) {
ellipsoid_fit_success = true;
}
}
}
sphere_radius[cur_mag] = sphere_data.radius;
for (int i = 0; i < 3; i++) {
sphere[cur_mag](i) = sphere_data.offset(i);
diag[cur_mag](i) = sphere_data.diag(i);
offdiag[cur_mag](i) = sphere_data.offdiag(i);
}
if (!sphere_fit_success && !ellipsoid_fit_success) {
calibration_log_emergency(mavlink_log_pub, "Retry calibration (unable to fit mag %u)", cur_mag);
result = calibrate_return_error;
break;
}
result = check_calibration_result(sphere[cur_mag](0), sphere[cur_mag](1), sphere[cur_mag](2),
sphere_radius[cur_mag],
diag[cur_mag](0), diag[cur_mag](1), diag[cur_mag](2),
offdiag[cur_mag](0), offdiag[cur_mag](1), offdiag[cur_mag](2),
mavlink_log_pub, cur_mag);
if (result == calibrate_return_error) {
break;
}
}
}
}
#if 0
// DO NOT REMOVE! Critical validation data!
if (result == calibrate_return_ok) {
// Print uncalibrated data points
for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if (worker_data.calibration_counter_total[cur_mag] == 0) {
continue;
}
printf("MAG %u with %u samples:\n", cur_mag, worker_data.calibration_counter_total[cur_mag]);
printf("RAW -> CALIBRATED\n");
float scale_data[9] {
diag[cur_mag](0), offdiag[cur_mag](0), offdiag[cur_mag](1),
offdiag[cur_mag](0), diag[cur_mag](1), offdiag[cur_mag](2),
offdiag[cur_mag](1), offdiag[cur_mag](2), diag[cur_mag](2)
};
const Matrix3f scale{scale_data};
const Vector3f &offset = sphere[cur_mag];
for (size_t i = 0; i < worker_data.calibration_counter_total[cur_mag]; i++) {
float x = worker_data.x[cur_mag][i];
float y = worker_data.y[cur_mag][i];
float z = worker_data.z[cur_mag][i];
// apply calibration
const Vector3f cal{scale *(Vector3f{x, y, z} - offset)};
printf("[%.3f, %.3f, %.3f] -> [%.3f, %.3f, %.3f]\n",
(double)x, (double)y, (double)z,
(double)cal(0), (double)cal(1), (double)cal(2));
}
printf("SPHERE RADIUS: %8.4f\n", (double)sphere_radius[cur_mag]);
}
}
#endif // DO NOT REMOVE! Critical validation data!
// Attempt to automatically determine external mag rotations
if (result == calibrate_return_ok) {
int32_t param_cal_mag_rot_auto = 0;
param_get(param_find("CAL_MAG_ROT_AUTO"), ¶m_cal_mag_rot_auto);
if ((worker_data.calibration_sides >= 3) && (param_cal_mag_rot_auto == 1)) {
// find first internal mag to use as reference
int internal_index = -1;
for (unsigned cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if (!worker_data.calibration[cur_mag].external() && (worker_data.calibration[cur_mag].device_id() != 0)) {
internal_index = cur_mag;
break;
}
}
// only proceed if there's a valid internal
if (internal_index >= 0) {
const Dcmf board_rotation = calibration::GetBoardRotationMatrix();
// apply new calibrations to all raw sensor data before comparison
for (unsigned cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if (worker_data.calibration[cur_mag].device_id() != 0) {
float scale_data[9] {
diag[cur_mag](0), offdiag[cur_mag](0), offdiag[cur_mag](1),
offdiag[cur_mag](0), diag[cur_mag](1), offdiag[cur_mag](2),
offdiag[cur_mag](1), offdiag[cur_mag](2), diag[cur_mag](2)
};
const Matrix3f scale{scale_data};
const Vector3f &offset{sphere[cur_mag]};
for (unsigned i = 0; i < worker_data.calibration_counter_total[cur_mag]; i++) {
const Vector3f sample{worker_data.x[cur_mag][i], worker_data.y[cur_mag][i], worker_data.z[cur_mag][i]};
// apply calibration
Vector3f m{scale *(sample - offset)};
if (!worker_data.calibration[cur_mag].external()) {
// rotate internal mag data to board
m = board_rotation * m;
}
// store back in worker_data
worker_data.x[cur_mag][i] = m(0);
worker_data.y[cur_mag][i] = m(1);
worker_data.z[cur_mag][i] = m(2);
}
}
}
// external mags try all rotations and compute mean square error (MSE) compared with first internal mag
for (int cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
if ((worker_data.calibration[cur_mag].device_id() != 0) && (cur_mag != internal_index)) {
const int last_sample_index = math::min(worker_data.calibration_counter_total[internal_index],
worker_data.calibration_counter_total[cur_mag]);
float MSE[ROTATION_MAX] {}; // mean square error for each rotation
float min_mse = FLT_MAX;
Rotation best_rotation = ROTATION_NONE;
for (int r = ROTATION_NONE; r < ROTATION_MAX; r++) {
switch (r) {
case ROTATION_ROLL_90_PITCH_68_YAW_293: // skip
// FALLTHROUGH
case ROTATION_PITCH_180_YAW_90: // skip 26, same as 14 ROTATION_ROLL_180_YAW_270
// FALLTHROUGH
case ROTATION_PITCH_180_YAW_270: // skip 27, same as 10 ROTATION_ROLL_180_YAW_90
MSE[r] = FLT_MAX;
break;
default:
float diff_sum = 0.f;
for (int i = 0; i < last_sample_index; i++) {
float x = worker_data.x[cur_mag][i];
float y = worker_data.y[cur_mag][i];
float z = worker_data.z[cur_mag][i];
rotate_3f((enum Rotation)r, x, y, z);
Vector3f diff = Vector3f{x, y, z} - Vector3f{worker_data.x[internal_index][i], worker_data.y[internal_index][i], worker_data.z[internal_index][i]};
diff_sum += diff.norm_squared();
}
// compute mean squared error
MSE[r] = diff_sum / last_sample_index;
if (MSE[r] < min_mse) {
min_mse = MSE[r];
best_rotation = (Rotation)r;
}
break;
}
}
// Check that the best rotation is at least twice as good as the next best
bool smallest_check_passed = true;
for (int r = ROTATION_NONE; r < ROTATION_MAX; r++) {
if (r != best_rotation) {
if (MSE[r] < (min_mse * 2.f)) {
smallest_check_passed = false;
}
}
}
// Check that the average error across all samples (relative to internal mag) is less than the minimum earth field (~0.25 Gauss)
const float mag_error_gs = sqrt(min_mse / last_sample_index);
bool total_error_check_passed = (mag_error_gs < 0.25f);
#if defined(DEBUG_BUILD)
bool print_all_mse = true;
#else
bool print_all_mse = false;
#endif // DEBUG_BUILD
if (worker_data.calibration[cur_mag].external()) {
switch (worker_data.calibration[cur_mag].rotation_enum()) {
case ROTATION_ROLL_90_PITCH_68_YAW_293:
PX4_INFO("[cal] External Mag: %d (%d), keeping manually configured rotation %d", cur_mag,
worker_data.calibration[cur_mag].device_id(), worker_data.calibration[cur_mag].rotation_enum());
continue;
default:
break;
}
if (smallest_check_passed && total_error_check_passed) {
if (best_rotation != worker_data.calibration[cur_mag].rotation_enum()) {
calibration_log_info(mavlink_log_pub, "[cal] External Mag: %d (%d), determined rotation: %d", cur_mag,
worker_data.calibration[cur_mag].device_id(), best_rotation);
worker_data.calibration[cur_mag].set_rotation(best_rotation);
} else {
PX4_INFO("[cal] External Mag: %d (%d), no rotation change: %d", cur_mag,
worker_data.calibration[cur_mag].device_id(), best_rotation);
}
} else {
PX4_ERR("External Mag: %d (%d), determining rotation failed", cur_mag, worker_data.calibration[cur_mag].device_id());
print_all_mse = true;
}
} else {
// non-primary internal mags, warn if there seems to be a rotation relative to the first primary (internal_index)
if (best_rotation != ROTATION_NONE) {
calibration_log_critical(mavlink_log_pub, "[cal] Internal Mag: %d (%d) rotation %d relative to primary %d (%d)",
cur_mag, worker_data.calibration[cur_mag].device_id(), best_rotation,
internal_index, worker_data.calibration[internal_index].device_id());
print_all_mse = true;
}
}
if (print_all_mse) {
for (int r = ROTATION_NONE; r < ROTATION_MAX; r++) {
PX4_ERR("%s Mag: %d (%d), rotation: %d, MSE: %.3f",
worker_data.calibration[cur_mag].external() ? "External" : "Internal",
cur_mag, worker_data.calibration[cur_mag].device_id(), r, (double)MSE[r]);
}
}
}
}
}
}
}
// Data points are no longer needed
for (size_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
free(worker_data.x[cur_mag]);
free(worker_data.y[cur_mag]);
free(worker_data.z[cur_mag]);
}
FactoryCalibrationStorage factory_storage;
if (result == calibrate_return_ok && factory_storage.open() != PX4_OK) {
calibration_log_critical(mavlink_log_pub, "ERROR: cannot open calibration storage");
result = calibrate_return_error;
}
if (result == calibrate_return_ok) {
bool param_save = false;
bool failed = true;
for (unsigned cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
auto ¤t_cal = worker_data.calibration[cur_mag];
if (current_cal.device_id() != 0) {
if (worker_data.append_to_existing_calibration) {
// Update calibration
// The formula for applying the calibration is:
// mag_value = (mag_readout - (offset_existing + offset_new/scale_existing)) * scale_existing
Vector3f offset = current_cal.offset() + sphere[cur_mag].edivide(current_cal.scale().diag());
current_cal.set_offset(offset);
} else {
current_cal.set_offset(sphere[cur_mag]);
current_cal.set_scale(diag[cur_mag]);
current_cal.set_offdiagonal(offdiag[cur_mag]);
}
current_cal.PrintStatus();
} else {
current_cal.Reset();
}
current_cal.set_calibration_index(cur_mag);
if (current_cal.ParametersSave()) {
param_save = true;
failed = false;
} else {
failed = true;
calibration_log_critical(mavlink_log_pub, "calibration save failed");
break;
}
}
if (!failed && factory_storage.store() != PX4_OK) {
failed = true;
}
if (param_save) {
param_notify_changes();
}
if (failed) {
result = calibrate_return_error;
}
}
return result;
}
int do_mag_calibration_quick(orb_advert_t *mavlink_log_pub, float heading_radians, float latitude, float longitude)
{
// magnetometer quick calibration
// if GPS available use world magnetic model to zero mag offsets
bool mag_earth_available = false;
if (PX4_ISFINITE(latitude) && PX4_ISFINITE(longitude)) {
mag_earth_available = true;
} else {
uORB::Subscription vehicle_gps_position_sub{ORB_ID(vehicle_gps_position)};
vehicle_gps_position_s gps;
if (vehicle_gps_position_sub.copy(&gps)) {
if ((gps.timestamp != 0) && (gps.eph < 1000)) {
latitude = gps.lat / 1.e7f;
longitude = gps.lon / 1.e7f;
mag_earth_available = true;
}
}
}
if (!mag_earth_available) {
calibration_log_critical(mavlink_log_pub, "GPS required for mag quick cal");
return PX4_ERROR;
} else {
// magnetic field data returned by the geo library using the current GPS position
const float mag_declination_gps = get_mag_declination_radians(latitude, longitude);
const float mag_inclination_gps = get_mag_inclination_radians(latitude, longitude);
const float mag_strength_gps = get_mag_strength_gauss(latitude, longitude);
const Vector3f mag_earth_pred = Dcmf(Eulerf(0, -mag_inclination_gps, mag_declination_gps)) * Vector3f(mag_strength_gps,
0, 0);
uORB::Subscription vehicle_attitude_sub{ORB_ID(vehicle_attitude)};
vehicle_attitude_s attitude{};
vehicle_attitude_sub.copy(&attitude);
if (hrt_elapsed_time(&attitude.timestamp) > 1_s) {
calibration_log_critical(mavlink_log_pub, "attitude required for mag quick cal");
return PX4_ERROR;
}
FactoryCalibrationStorage factory_storage;
if (factory_storage.open() != PX4_OK) {
calibration_log_critical(mavlink_log_pub, "ERROR: cannot open calibration storage");
return PX4_ERROR;
}
calibration_log_critical(mavlink_log_pub, "Assuming vehicle is facing heading %.1f degrees",
(double)math::radians(heading_radians));
matrix::Eulerf euler{matrix::Quatf{attitude.q}};
euler(2) = heading_radians;
const Vector3f expected_field = Dcmf(euler).transpose() * mag_earth_pred;
bool param_save = false;
bool failed = true;
for (uint8_t cur_mag = 0; cur_mag < MAX_MAGS; cur_mag++) {
uORB::Subscription mag_sub{ORB_ID(sensor_mag), cur_mag};
sensor_mag_s mag{};
mag_sub.copy(&mag);
if (mag_sub.advertised() && (mag.timestamp != 0)) {
calibration::Magnetometer cal{mag.device_id, mag.is_external};
// force calibration index to uORB index
cal.set_calibration_index(cur_mag);
// use any existing scale and store the offset to the expected earth field
const Vector3f offset = Vector3f{mag.x, mag.y, mag.z} - (cal.scale().I() * cal.rotation().transpose() * expected_field);
cal.set_offset(offset);
// save new calibration
if (cal.ParametersSave()) {
cal.PrintStatus();
param_save = true;
failed = false;
} else {
failed = true;
calibration_log_critical(mavlink_log_pub, "calibration save failed");
break;
}
}
}
if (param_save) {
param_notify_changes();
}
if (!failed && factory_storage.store() != PX4_OK) {
failed = true;
}
if (!failed) {
calibration_log_info(mavlink_log_pub, "Mag quick calibration finished");
return PX4_OK;
}
}
calibration_log_critical(mavlink_log_pub, CAL_QGC_FAILED_MSG, sensor_name);
return PX4_ERROR;
}