accelerometer_calibration.cpp
19.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/****************************************************************************
*
* Copyright (c) 2013-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file accelerometer_calibration.cpp
*
* Implementation of accelerometer calibration.
*
* Transform acceleration vector to true orientation, scale and offset
*
* ===== Model =====
* accel_corr = accel_T * (accel_raw - accel_offs)
*
* accel_corr[3] - fully corrected acceleration vector in body frame
* accel_T[3][3] - accelerometers transform matrix, rotation and scaling transform
* accel_raw[3] - raw acceleration vector
* accel_offs[3] - acceleration offset vector
*
* ===== Calibration =====
*
* Reference vectors
* accel_corr_ref[6][3] = [ g 0 0 ] // nose up
* | -g 0 0 | // nose down
* | 0 g 0 | // left side down
* | 0 -g 0 | // right side down
* | 0 0 g | // on back
* [ 0 0 -g ] // level
* accel_raw_ref[6][3]
*
* accel_corr_ref[i] = accel_T * (accel_raw_ref[i] - accel_offs), i = 0...5
*
* 6 reference vectors * 3 axes = 18 equations
* 9 (accel_T) + 3 (accel_offs) = 12 unknown constants
*
* Find accel_offs
*
* accel_offs[i] = (accel_raw_ref[i*2][i] + accel_raw_ref[i*2+1][i]) / 2
*
* Find accel_T
*
* 9 unknown constants
* need 9 equations -> use 3 of 6 measurements -> 3 * 3 = 9 equations
*
* accel_corr_ref[i*2] = accel_T * (accel_raw_ref[i*2] - accel_offs), i = 0...2
*
* Solve separate system for each row of accel_T:
*
* accel_corr_ref[j*2][i] = accel_T[i] * (accel_raw_ref[j*2] - accel_offs), j = 0...2
*
* A * x = b
*
* x = [ accel_T[0][i] ]
* | accel_T[1][i] |
* [ accel_T[2][i] ]
*
* b = [ accel_corr_ref[0][i] ] // One measurement per side is enough
* | accel_corr_ref[2][i] |
* [ accel_corr_ref[4][i] ]
*
* a[i][j] = accel_raw_ref[i][j] - accel_offs[j], i = 0;2;4, j = 0...2
*
* Matrix A is common for all three systems:
* A = [ a[0][0] a[0][1] a[0][2] ]
* | a[2][0] a[2][1] a[2][2] |
* [ a[4][0] a[4][1] a[4][2] ]
*
* x = A^-1 * b
*
* accel_T = A^-1 * g
* g = 9.80665
*
* ===== Rotation =====
*
* Calibrating using model:
* accel_corr = accel_T_r * (rot * accel_raw - accel_offs_r)
*
* Actual correction:
* accel_corr = rot * accel_T * (accel_raw - accel_offs)
*
* Known: accel_T_r, accel_offs_r, rot
* Unknown: accel_T, accel_offs
*
* Solution:
* accel_T_r * (rot * accel_raw - accel_offs_r) = rot * accel_T * (accel_raw - accel_offs)
* rot^-1 * accel_T_r * (rot * accel_raw - accel_offs_r) = accel_T * (accel_raw - accel_offs)
* rot^-1 * accel_T_r * rot * accel_raw - rot^-1 * accel_T_r * accel_offs_r = accel_T * accel_raw - accel_T * accel_offs)
* => accel_T = rot^-1 * accel_T_r * rot
* => accel_offs = rot^-1 * accel_offs_r
*
* @author Anton Babushkin <anton.babushkin@me.com>
*/
#include "accelerometer_calibration.h"
#include "calibration_messages.h"
#include "calibration_routines.h"
#include "commander_helper.h"
#include "factory_calibration_storage.h"
#include <px4_platform_common/defines.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/time.h>
#include <drivers/drv_hrt.h>
#include <lib/sensor_calibration/Accelerometer.hpp>
#include <lib/sensor_calibration/Utilities.hpp>
#include <lib/mathlib/mathlib.h>
#include <lib/ecl/geo/geo.h>
#include <matrix/math.hpp>
#include <lib/conversion/rotation.h>
#include <lib/parameters/param.h>
#include <lib/systemlib/err.h>
#include <lib/systemlib/mavlink_log.h>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionBlocking.hpp>
#include <uORB/SubscriptionMultiArray.hpp>
#include <uORB/topics/sensor_accel.h>
#include <uORB/topics/vehicle_attitude.h>
using namespace matrix;
using namespace time_literals;
static constexpr char sensor_name[] {"accel"};
static constexpr unsigned MAX_ACCEL_SENS = 4;
/// Data passed to calibration worker routine
struct accel_worker_data_s {
orb_advert_t *mavlink_log_pub{nullptr};
unsigned done_count{0};
float accel_ref[MAX_ACCEL_SENS][detect_orientation_side_count][3] {};
};
// Read specified number of accelerometer samples, calculate average and dispersion.
static calibrate_return read_accelerometer_avg(float (&accel_avg)[MAX_ACCEL_SENS][detect_orientation_side_count][3],
unsigned orient, unsigned samples_num)
{
Vector3f accel_sum[MAX_ACCEL_SENS] {};
unsigned counts[MAX_ACCEL_SENS] {};
unsigned errcount = 0;
// sensor thermal corrections
uORB::Subscription sensor_correction_sub{ORB_ID(sensor_correction)};
sensor_correction_s sensor_correction{};
sensor_correction_sub.copy(&sensor_correction);
uORB::SubscriptionBlocking<sensor_accel_s> accel_sub[MAX_ACCEL_SENS] {
{ORB_ID(sensor_accel), 0, 0},
{ORB_ID(sensor_accel), 0, 1},
{ORB_ID(sensor_accel), 0, 2},
{ORB_ID(sensor_accel), 0, 3},
};
/* use the first sensor to pace the readout, but do per-sensor counts */
while (counts[0] < samples_num) {
if (accel_sub[0].updatedBlocking(100000)) {
for (unsigned accel_index = 0; accel_index < MAX_ACCEL_SENS; accel_index++) {
sensor_accel_s arp;
while (accel_sub[accel_index].update(&arp)) {
// fetch optional thermal offset corrections in sensor/board frame
Vector3f offset{0, 0, 0};
sensor_correction_sub.update(&sensor_correction);
if (sensor_correction.timestamp > 0 && arp.device_id != 0) {
for (uint8_t correction_index = 0; correction_index < MAX_ACCEL_SENS; correction_index++) {
if (sensor_correction.accel_device_ids[correction_index] == arp.device_id) {
switch (correction_index) {
case 0:
offset = Vector3f{sensor_correction.accel_offset_0};
break;
case 1:
offset = Vector3f{sensor_correction.accel_offset_1};
break;
case 2:
offset = Vector3f{sensor_correction.accel_offset_2};
break;
case 3:
offset = Vector3f{sensor_correction.accel_offset_3};
break;
}
}
}
}
accel_sum[accel_index] += Vector3f{arp.x, arp.y, arp.z} - offset;
counts[accel_index]++;
}
}
} else {
errcount++;
continue;
}
if (errcount > samples_num / 10) {
return calibrate_return_error;
}
}
// rotate sensor measurements from sensor to body frame using board rotation matrix
const Dcmf board_rotation = calibration::GetBoardRotationMatrix();
for (unsigned s = 0; s < MAX_ACCEL_SENS; s++) {
accel_sum[s] = board_rotation * accel_sum[s];
}
for (unsigned s = 0; s < MAX_ACCEL_SENS; s++) {
const Vector3f avg{accel_sum[s] / counts[s]};
avg.copyTo(accel_avg[s][orient]);
}
return calibrate_return_ok;
}
static calibrate_return accel_calibration_worker(detect_orientation_return orientation, void *data)
{
static constexpr unsigned samples_num = 750;
accel_worker_data_s *worker_data = (accel_worker_data_s *)(data);
calibration_log_info(worker_data->mavlink_log_pub, "[cal] Hold still, measuring %s side",
detect_orientation_str(orientation));
read_accelerometer_avg(worker_data->accel_ref, orientation, samples_num);
// check accel
for (unsigned accel_index = 0; accel_index < MAX_ACCEL_SENS; accel_index++) {
switch (orientation) {
case ORIENTATION_TAIL_DOWN: // [ g, 0, 0 ]
if (worker_data->accel_ref[accel_index][ORIENTATION_TAIL_DOWN][0] < 0.f) {
calibration_log_emergency(worker_data->mavlink_log_pub, "[cal] accel %d invalid X-axis, check rotation", accel_index);
return calibrate_return_error;
}
break;
case ORIENTATION_NOSE_DOWN: // [ -g, 0, 0 ]
if (worker_data->accel_ref[accel_index][ORIENTATION_NOSE_DOWN][0] > 0.f) {
calibration_log_emergency(worker_data->mavlink_log_pub, "[cal] accel %d invalid X-axis, check rotation", accel_index);
return calibrate_return_error;
}
break;
case ORIENTATION_LEFT: // [ 0, g, 0 ]
if (worker_data->accel_ref[accel_index][ORIENTATION_LEFT][1] < 0.f) {
calibration_log_emergency(worker_data->mavlink_log_pub, "[cal] accel %d invalid Y-axis, check rotation", accel_index);
return calibrate_return_error;
}
break;
case ORIENTATION_RIGHT: // [ 0, -g, 0 ]
if (worker_data->accel_ref[accel_index][ORIENTATION_RIGHT][1] > 0.f) {
calibration_log_emergency(worker_data->mavlink_log_pub, "[cal] accel %d invalid Y-axis, check rotation", accel_index);
return calibrate_return_error;
}
break;
case ORIENTATION_UPSIDE_DOWN: // [ 0, 0, g ]
if (worker_data->accel_ref[accel_index][ORIENTATION_UPSIDE_DOWN][2] < 0.f) {
calibration_log_emergency(worker_data->mavlink_log_pub, "[cal] accel %d invalid Z-axis, check rotation", accel_index);
return calibrate_return_error;
}
break;
case ORIENTATION_RIGHTSIDE_UP: // [ 0, 0, -g ]
if (worker_data->accel_ref[accel_index][ORIENTATION_RIGHTSIDE_UP][2] > 0.f) {
calibration_log_emergency(worker_data->mavlink_log_pub, "[cal] accel %d invalid Z-axis, check rotation", accel_index);
return calibrate_return_error;
}
break;
default:
break;
}
}
calibration_log_info(worker_data->mavlink_log_pub, "[cal] %s side result: [%.3f %.3f %.3f]",
detect_orientation_str(orientation),
(double)worker_data->accel_ref[0][orientation][0],
(double)worker_data->accel_ref[0][orientation][1],
(double)worker_data->accel_ref[0][orientation][2]);
worker_data->done_count++;
calibration_log_info(worker_data->mavlink_log_pub, CAL_QGC_PROGRESS_MSG, 17 * worker_data->done_count);
return calibrate_return_ok;
}
int do_accel_calibration(orb_advert_t *mavlink_log_pub)
{
calibration_log_info(mavlink_log_pub, CAL_QGC_STARTED_MSG, sensor_name);
calibration::Accelerometer calibrations[MAX_ACCEL_SENS] {};
unsigned active_sensors = 0;
for (uint8_t cur_accel = 0; cur_accel < MAX_ACCEL_SENS; cur_accel++) {
uORB::SubscriptionData<sensor_accel_s> accel_sub{ORB_ID(sensor_accel), cur_accel};
if (accel_sub.advertised() && (accel_sub.get().device_id != 0) && (accel_sub.get().timestamp > 0)) {
calibrations[cur_accel].set_device_id(accel_sub.get().device_id);
active_sensors++;
} else {
calibrations[cur_accel].Reset();
}
// reset calibration index to match uORB numbering
calibrations[cur_accel].set_calibration_index(cur_accel);
}
if (active_sensors == 0) {
calibration_log_critical(mavlink_log_pub, CAL_ERROR_SENSOR_MSG);
return PX4_ERROR;
}
FactoryCalibrationStorage factory_storage;
if (factory_storage.open() != PX4_OK) {
calibration_log_critical(mavlink_log_pub, "ERROR: cannot open calibration storage");
return PX4_ERROR;
}
/* measure and calculate offsets & scales */
accel_worker_data_s worker_data{};
worker_data.mavlink_log_pub = mavlink_log_pub;
bool data_collected[detect_orientation_side_count] {};
if (calibrate_from_orientation(mavlink_log_pub, data_collected, accel_calibration_worker, &worker_data,
false) == calibrate_return_ok) {
const Dcmf board_rotation = calibration::GetBoardRotationMatrix();
const Dcmf board_rotation_t = board_rotation.transpose();
bool param_save = false;
bool failed = true;
for (unsigned i = 0; i < MAX_ACCEL_SENS; i++) {
if (i < active_sensors) {
// calculate offsets
Vector3f offset{};
// X offset: average X from TAIL_DOWN + NOSE_DOWN
const Vector3f accel_tail_down{worker_data.accel_ref[i][ORIENTATION_TAIL_DOWN]};
const Vector3f accel_nose_down{worker_data.accel_ref[i][ORIENTATION_NOSE_DOWN]};
offset(0) = (accel_tail_down(0) + accel_nose_down(0)) * 0.5f;
// Y offset: average Y from LEFT + RIGHT
const Vector3f accel_left{worker_data.accel_ref[i][ORIENTATION_LEFT]};
const Vector3f accel_right{worker_data.accel_ref[i][ORIENTATION_RIGHT]};
offset(1) = (accel_left(1) + accel_right(1)) * 0.5f;
// Z offset: average Z from UPSIDE_DOWN + RIGHTSIDE_UP
const Vector3f accel_upside_down{worker_data.accel_ref[i][ORIENTATION_UPSIDE_DOWN]};
const Vector3f accel_rightside_up{worker_data.accel_ref[i][ORIENTATION_RIGHTSIDE_UP]};
offset(2) = (accel_upside_down(2) + accel_rightside_up(2)) * 0.5f;
// transform matrix
Matrix3f mat_A;
mat_A.row(0) = accel_tail_down - offset;
mat_A.row(1) = accel_left - offset;
mat_A.row(2) = accel_upside_down - offset;
// calculate inverse matrix for A: simplify matrices mult because b has only one non-zero element == g at index i
const Matrix3f accel_T = mat_A.I() * CONSTANTS_ONE_G;
// update calibration
const Vector3f accel_offs_rotated{board_rotation_t *offset};
calibrations[i].set_offset(accel_offs_rotated);
const Matrix3f accel_T_rotated{board_rotation_t *accel_T * board_rotation};
calibrations[i].set_scale(accel_T_rotated.diag());
#if defined(DEBUD_BUILD)
PX4_INFO("accel %d: offset", i);
offset.print();
PX4_INFO("accel %d: bT * offset", i);
accel_offs_rotated.print();
PX4_INFO("accel %d: mat_A", i);
mat_A.print();
PX4_INFO("accel %d: accel_T", i);
accel_T.print();
PX4_INFO("accel %d: bT * accel_T * b", i);
accel_T_rotated.print();
#endif // DEBUD_BUILD
calibrations[i].PrintStatus();
}
// save all calibrations including empty slots
if (calibrations[i].ParametersSave()) {
param_save = true;
failed = false;
} else {
failed = true;
calibration_log_critical(mavlink_log_pub, "calibration save failed");
break;
}
}
if (!failed && factory_storage.store() != PX4_OK) {
failed = true;
}
if (param_save) {
param_notify_changes();
}
if (!failed) {
calibration_log_info(mavlink_log_pub, CAL_QGC_DONE_MSG, sensor_name);
px4_usleep(600000); // give this message enough time to propagate
return PX4_OK;
}
}
calibration_log_critical(mavlink_log_pub, CAL_QGC_FAILED_MSG, sensor_name);
px4_usleep(600000); // give this message enough time to propagate
return PX4_ERROR;
}
int do_accel_calibration_quick(orb_advert_t *mavlink_log_pub)
{
#if !defined(CONSTRAINED_FLASH)
PX4_INFO("Accelerometer quick calibration");
bool param_save = false;
bool failed = true;
FactoryCalibrationStorage factory_storage;
if (factory_storage.open() != PX4_OK) {
calibration_log_critical(mavlink_log_pub, "ERROR: cannot open calibration storage");
return PX4_ERROR;
}
// sensor thermal corrections (optional)
uORB::Subscription sensor_correction_sub{ORB_ID(sensor_correction)};
sensor_correction_s sensor_correction{};
sensor_correction_sub.copy(&sensor_correction);
uORB::SubscriptionMultiArray<sensor_accel_s, MAX_ACCEL_SENS> accel_subs{ORB_ID::sensor_accel};
/* use the first sensor to pace the readout, but do per-sensor counts */
for (unsigned accel_index = 0; accel_index < MAX_ACCEL_SENS; accel_index++) {
sensor_accel_s arp{};
Vector3f accel_sum{};
unsigned count = 0;
while (accel_subs[accel_index].update(&arp)) {
// fetch optional thermal offset corrections in sensor/board frame
if ((arp.timestamp > 0) && (arp.device_id != 0)) {
Vector3f offset{0, 0, 0};
if (sensor_correction.timestamp > 0) {
for (uint8_t correction_index = 0; correction_index < MAX_ACCEL_SENS; correction_index++) {
if (sensor_correction.accel_device_ids[correction_index] == arp.device_id) {
switch (correction_index) {
case 0:
offset = Vector3f{sensor_correction.accel_offset_0};
break;
case 1:
offset = Vector3f{sensor_correction.accel_offset_1};
break;
case 2:
offset = Vector3f{sensor_correction.accel_offset_2};
break;
case 3:
offset = Vector3f{sensor_correction.accel_offset_3};
break;
}
}
}
}
const Vector3f accel{Vector3f{arp.x, arp.y, arp.z} - offset};
if (count > 0) {
const Vector3f diff{accel - (accel_sum / count)};
if (diff.norm() < 1.f) {
accel_sum += Vector3f{arp.x, arp.y, arp.z} - offset;
count++;
}
} else {
accel_sum = accel;
count = 1;
}
}
}
if ((count > 0) && (arp.device_id != 0)) {
bool calibrated = false;
const Vector3f accel_avg = accel_sum / count;
Vector3f offset{0.f, 0.f, 0.f};
uORB::SubscriptionData<vehicle_attitude_s> attitude_sub{ORB_ID(vehicle_attitude)};
attitude_sub.update();
if (attitude_sub.advertised() && attitude_sub.get().timestamp != 0) {
// use vehicle_attitude if available
const vehicle_attitude_s &att = attitude_sub.get();
const matrix::Quatf q{att.q};
const Vector3f accel_ref = q.conjugate_inversed(Vector3f{0.f, 0.f, -CONSTANTS_ONE_G});
// sanity check angle between acceleration vectors
const float angle = AxisAnglef(Quatf(accel_avg, accel_ref)).angle();
if (angle <= math::radians(10.f)) {
offset = accel_avg - accel_ref;
calibrated = true;
}
}
if (!calibrated) {
// otherwise simply normalize to gravity and remove offset
Vector3f accel{accel_avg};
accel.normalize();
accel = accel * CONSTANTS_ONE_G;
offset = accel_avg - accel;
calibrated = true;
}
calibration::Accelerometer calibration{arp.device_id};
// reset cal index to uORB
calibration.set_calibration_index(accel_index);
if (!calibrated || (offset.norm() > CONSTANTS_ONE_G)
|| !PX4_ISFINITE(offset(0))
|| !PX4_ISFINITE(offset(1))
|| !PX4_ISFINITE(offset(2))) {
PX4_ERR("accel %d quick calibrate failed", accel_index);
} else {
calibration.set_offset(offset);
if (calibration.ParametersSave()) {
calibration.PrintStatus();
param_save = true;
failed = false;
} else {
failed = true;
calibration_log_critical(mavlink_log_pub, CAL_QGC_FAILED_MSG, "calibration save failed");
break;
}
}
}
}
if (!failed && factory_storage.store() != PX4_OK) {
failed = true;
}
if (param_save) {
param_notify_changes();
}
if (!failed) {
return PX4_OK;
}
#endif // !CONSTRAINED_FLASH
return PX4_ERROR;
}