crsf.cpp
14.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/****************************************************************************
*
* Copyright (c) 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#if 0 // enable non-verbose debugging
#define CRSF_DEBUG PX4_WARN
#else
#define CRSF_DEBUG(...)
#endif
#if 0 // verbose debugging. Careful when enabling: it leads to too much output, causing dropped bytes
#define CRSF_VERBOSE PX4_WARN
#else
#define CRSF_VERBOSE(...)
#endif
#include <drivers/drv_hrt.h>
#include <termios.h>
#include <string.h>
#include <unistd.h>
#include "crsf.h"
#include "common_rc.h"
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#define CRSF_BAUDRATE 420000
#define CRSF_SYNC_BYTE 0xC8
enum class crsf_frame_type_t : uint8_t {
gps = 0x02,
battery_sensor = 0x08,
link_statistics = 0x14,
rc_channels_packed = 0x16,
attitude = 0x1E,
flight_mode = 0x21,
// Extended Header Frames, range: 0x28 to 0x96
device_ping = 0x28,
device_info = 0x29,
parameter_settings_entry = 0x2B,
parameter_read = 0x2C,
parameter_write = 0x2D,
command = 0x32
};
enum class crsf_payload_size_t : uint8_t {
gps = 15,
battery_sensor = 8,
link_statistics = 10,
rc_channels = 22, ///< 11 bits per channel * 16 channels = 22 bytes.
attitude = 6,
};
enum class crsf_address_t : uint8_t {
broadcast = 0x00,
usb = 0x10,
tbs_core_pnp_pro = 0x80,
reserved1 = 0x8A,
current_sensor = 0xC0,
gps = 0xC2,
tbs_blackbox = 0xC4,
flight_controller = 0xC8,
reserved2 = 0xCA,
race_tag = 0xCC,
radio_transmitter = 0xEA,
crsf_receiver = 0xEC,
crsf_transmitter = 0xEE
};
#pragma pack(push, 1)
struct crsf_payload_RC_channels_packed_t {
// 176 bits of data (11 bits per channel * 16 channels) = 22 bytes
unsigned chan0 : 11;
unsigned chan1 : 11;
unsigned chan2 : 11;
unsigned chan3 : 11;
unsigned chan4 : 11;
unsigned chan5 : 11;
unsigned chan6 : 11;
unsigned chan7 : 11;
unsigned chan8 : 11;
unsigned chan9 : 11;
unsigned chan10 : 11;
unsigned chan11 : 11;
unsigned chan12 : 11;
unsigned chan13 : 11;
unsigned chan14 : 11;
unsigned chan15 : 11;
};
#pragma pack(pop)
enum class crsf_parser_state_t : uint8_t {
unsynced = 0,
synced
};
static crsf_frame_t &crsf_frame = rc_decode_buf.crsf_frame;
static unsigned current_frame_position = 0;
static crsf_parser_state_t parser_state = crsf_parser_state_t::unsynced;
/**
* parse the current crsf_frame buffer
*/
static bool crsf_parse_buffer(uint16_t *values, uint16_t *num_values, uint16_t max_channels);
uint8_t crsf_frame_CRC(const crsf_frame_t &frame);
int
crsf_config(int uart_fd)
{
struct termios t;
/* no parity, one stop bit */
tcgetattr(uart_fd, &t);
cfsetspeed(&t, CRSF_BAUDRATE);
t.c_cflag &= ~(CSTOPB | PARENB);
return tcsetattr(uart_fd, TCSANOW, &t);
}
/**
* Convert from RC to PWM value
* @param chan_value channel value in [172, 1811]
* @return PWM channel value in [1000, 2000]
*/
static uint16_t convert_channel_value(unsigned chan_value);
bool crsf_parse(const uint64_t now, const uint8_t *frame, unsigned len, uint16_t *values,
uint16_t *num_values, uint16_t max_channels)
{
bool ret = false;
uint8_t *crsf_frame_ptr = (uint8_t *)&crsf_frame;
while (len > 0) {
// fill in the crsf_buffer, as much as we can
const unsigned current_len = MIN(len, sizeof(crsf_frame_t) - current_frame_position);
memcpy(crsf_frame_ptr + current_frame_position, frame, current_len);
current_frame_position += current_len;
// protection to guarantee parsing progress
if (current_len == 0) {
CRSF_DEBUG("========== parser bug: no progress (%i) ===========", len);
for (unsigned i = 0; i < current_frame_position; ++i) {
CRSF_DEBUG("crsf_frame_ptr[%i]: 0x%x", i, (int)crsf_frame_ptr[i]);
}
// reset the parser
current_frame_position = 0;
parser_state = crsf_parser_state_t::unsynced;
return false;
}
len -= current_len;
frame += current_len;
if (crsf_parse_buffer(values, num_values, max_channels)) {
ret = true;
}
}
return ret;
}
uint8_t crsf_frame_CRC(const crsf_frame_t &frame)
{
// CRC includes type and payload
uint8_t crc = crc8_dvb_s2(0, frame.type);
for (int i = 0; i < frame.header.length - 2; ++i) {
crc = crc8_dvb_s2(crc, frame.payload[i]);
}
return crc;
}
static uint16_t convert_channel_value(unsigned chan_value)
{
/*
* RC PWM
* min 172 -> 988us
* mid 992 -> 1500us
* max 1811 -> 2012us
*/
static constexpr float scale = (2012.f - 988.f) / (1811.f - 172.f);
static constexpr float offset = 988.f - 172.f * scale;
return (scale * chan_value) + offset;
}
static bool crsf_parse_buffer(uint16_t *values, uint16_t *num_values, uint16_t max_channels)
{
uint8_t *crsf_frame_ptr = (uint8_t *)&crsf_frame;
if (parser_state == crsf_parser_state_t::unsynced) {
// there is no sync byte, try to find an RC packet by searching for a matching frame length and type
for (unsigned i = 1; i < current_frame_position - 1; ++i) {
if (crsf_frame_ptr[i] == (uint8_t)crsf_payload_size_t::rc_channels + 2 &&
crsf_frame_ptr[i + 1] == (uint8_t)crsf_frame_type_t::rc_channels_packed) {
parser_state = crsf_parser_state_t::synced;
unsigned frame_offset = i - 1;
CRSF_VERBOSE("RC channels found at offset %i", frame_offset);
// move the rest of the buffer to the beginning
if (frame_offset != 0) {
memmove(crsf_frame_ptr, crsf_frame_ptr + frame_offset, current_frame_position - frame_offset);
current_frame_position -= frame_offset;
}
break;
}
}
}
if (parser_state != crsf_parser_state_t::synced) {
if (current_frame_position >= sizeof(crsf_frame_t)) {
// discard most of the data, but keep the last 3 bytes (otherwise we could miss the frame start)
current_frame_position = 3;
for (unsigned i = 0; i < current_frame_position; ++i) {
crsf_frame_ptr[i] = crsf_frame_ptr[sizeof(crsf_frame_t) - current_frame_position + i];
}
CRSF_VERBOSE("Discarding buffer");
}
return false;
}
if (current_frame_position < 3) {
// wait until we have the header & type
return false;
}
// Now we have at least the header and the type
const unsigned current_frame_length = crsf_frame.header.length + sizeof(crsf_frame_header_t);
if (current_frame_length > sizeof(crsf_frame_t) || current_frame_length < 4) {
// frame too long or bogus -> discard everything and go into unsynced state
current_frame_position = 0;
parser_state = crsf_parser_state_t::unsynced;
CRSF_DEBUG("Frame too long/bogus (%i, type=%i) -> unsync", current_frame_length, crsf_frame.type);
return false;
}
if (current_frame_position < current_frame_length) {
// we don't have the full frame yet -> wait for more data
CRSF_VERBOSE("waiting for more data (%i < %i)", current_frame_position, current_frame_length);
return false;
}
bool ret = false;
// Now we have the full frame
if (crsf_frame.type == (uint8_t)crsf_frame_type_t::rc_channels_packed &&
crsf_frame.header.length == (uint8_t)crsf_payload_size_t::rc_channels + 2) {
const uint8_t crc = crsf_frame.payload[crsf_frame.header.length - 2];
if (crc == crsf_frame_CRC(crsf_frame)) {
const crsf_payload_RC_channels_packed_t *const rc_channels =
(crsf_payload_RC_channels_packed_t *)&crsf_frame.payload;
*num_values = MIN(max_channels, 16);
if (max_channels > 0) { values[0] = convert_channel_value(rc_channels->chan0); }
if (max_channels > 1) { values[1] = convert_channel_value(rc_channels->chan1); }
if (max_channels > 2) { values[2] = convert_channel_value(rc_channels->chan2); }
if (max_channels > 3) { values[3] = convert_channel_value(rc_channels->chan3); }
if (max_channels > 4) { values[4] = convert_channel_value(rc_channels->chan4); }
if (max_channels > 5) { values[5] = convert_channel_value(rc_channels->chan5); }
if (max_channels > 6) { values[6] = convert_channel_value(rc_channels->chan6); }
if (max_channels > 7) { values[7] = convert_channel_value(rc_channels->chan7); }
if (max_channels > 8) { values[8] = convert_channel_value(rc_channels->chan8); }
if (max_channels > 9) { values[9] = convert_channel_value(rc_channels->chan9); }
if (max_channels > 10) { values[10] = convert_channel_value(rc_channels->chan10); }
if (max_channels > 11) { values[11] = convert_channel_value(rc_channels->chan11); }
if (max_channels > 12) { values[12] = convert_channel_value(rc_channels->chan12); }
if (max_channels > 13) { values[13] = convert_channel_value(rc_channels->chan13); }
if (max_channels > 14) { values[14] = convert_channel_value(rc_channels->chan14); }
if (max_channels > 15) { values[15] = convert_channel_value(rc_channels->chan15); }
CRSF_VERBOSE("Got Channels");
ret = true;
} else {
CRSF_DEBUG("CRC check failed");
}
} else {
CRSF_DEBUG("Got Non-RC frame (len=%i, type=%i)", current_frame_length, crsf_frame.type);
// We could check the CRC here and reset the parser into unsynced state if it fails.
// But in practise it's robust even without that.
}
// Either reset or move the rest of the buffer
if (current_frame_position > current_frame_length) {
CRSF_VERBOSE("Moving buffer (%i > %i)", current_frame_position, current_frame_length);
memmove(crsf_frame_ptr, crsf_frame_ptr + current_frame_length, current_frame_position - current_frame_length);
current_frame_position -= current_frame_length;
} else {
current_frame_position = 0;
}
return ret;
}
/**
* write an uint8_t value to a buffer at a given offset and increment the offset
*/
static inline void write_uint8_t(uint8_t *buf, int &offset, uint8_t value)
{
buf[offset++] = value;
}
/**
* write an uint16_t value to a buffer at a given offset and increment the offset
*/
static inline void write_uint16_t(uint8_t *buf, int &offset, uint16_t value)
{
// Big endian
buf[offset] = value >> 8;
buf[offset + 1] = value & 0xff;
offset += 2;
}
/**
* write an uint24_t value to a buffer at a given offset and increment the offset
*/
static inline void write_uint24_t(uint8_t *buf, int &offset, int value)
{
// Big endian
buf[offset] = value >> 16;
buf[offset + 1] = (value >> 8) & 0xff;
buf[offset + 2] = value & 0xff;
offset += 3;
}
/**
* write an int32_t value to a buffer at a given offset and increment the offset
*/
static inline void write_int32_t(uint8_t *buf, int &offset, int32_t value)
{
// Big endian
buf[offset] = value >> 24;
buf[offset + 1] = (value >> 16) & 0xff;
buf[offset + 2] = (value >> 8) & 0xff;
buf[offset + 3] = value & 0xff;
offset += 4;
}
static inline void write_frame_header(uint8_t *buf, int &offset, crsf_frame_type_t type, uint8_t payload_size)
{
write_uint8_t(buf, offset, CRSF_SYNC_BYTE); // this got changed from the address to the sync byte
write_uint8_t(buf, offset, payload_size + 2);
write_uint8_t(buf, offset, (uint8_t)type);
}
static inline void write_frame_crc(uint8_t *buf, int &offset, int buf_size)
{
// CRC does not include the address and length
write_uint8_t(buf, offset, crc8_dvb_s2_buf(buf + 2, buf_size - 3));
// check correctness of buffer size (only needed during development)
//if (buf_size != offset) { PX4_ERR("frame size mismatch (%i != %i)", buf_size, offset); }
}
bool crsf_send_telemetry_battery(int uart_fd, uint16_t voltage, uint16_t current, int fuel, uint8_t remaining)
{
uint8_t buf[(uint8_t)crsf_payload_size_t::battery_sensor + 4];
int offset = 0;
write_frame_header(buf, offset, crsf_frame_type_t::battery_sensor, (uint8_t)crsf_payload_size_t::battery_sensor);
write_uint16_t(buf, offset, voltage);
write_uint16_t(buf, offset, current);
write_uint24_t(buf, offset, fuel);
write_uint8_t(buf, offset, remaining);
write_frame_crc(buf, offset, sizeof(buf));
return write(uart_fd, buf, offset) == offset;
}
bool crsf_send_telemetry_gps(int uart_fd, int32_t latitude, int32_t longitude, uint16_t groundspeed,
uint16_t gps_heading, uint16_t altitude, uint8_t num_satellites)
{
uint8_t buf[(uint8_t)crsf_payload_size_t::gps + 4];
int offset = 0;
write_frame_header(buf, offset, crsf_frame_type_t::gps, (uint8_t)crsf_payload_size_t::gps);
write_int32_t(buf, offset, latitude);
write_int32_t(buf, offset, longitude);
write_uint16_t(buf, offset, groundspeed);
write_uint16_t(buf, offset, gps_heading);
write_uint16_t(buf, offset, altitude);
write_uint8_t(buf, offset, num_satellites);
write_frame_crc(buf, offset, sizeof(buf));
return write(uart_fd, buf, offset) == offset;
}
bool crsf_send_telemetry_attitude(int uart_fd, int16_t pitch, int16_t roll, int16_t yaw)
{
uint8_t buf[(uint8_t)crsf_payload_size_t::attitude + 4];
int offset = 0;
write_frame_header(buf, offset, crsf_frame_type_t::attitude, (uint8_t)crsf_payload_size_t::attitude);
write_uint16_t(buf, offset, pitch);
write_uint16_t(buf, offset, roll);
write_uint16_t(buf, offset, yaw);
write_frame_crc(buf, offset, sizeof(buf));
return write(uart_fd, buf, offset) == offset;
}
bool crsf_send_telemetry_flight_mode(int uart_fd, const char *flight_mode)
{
const int max_length = 16;
int length = strlen(flight_mode) + 1;
if (length > max_length) {
length = max_length;
}
uint8_t buf[max_length + 4];
int offset = 0;
write_frame_header(buf, offset, crsf_frame_type_t::flight_mode, length);
memcpy(buf + offset, flight_mode, length);
offset += length;
buf[offset - 1] = 0; // ensure null-terminated string
write_frame_crc(buf, offset, length + 4);
return write(uart_fd, buf, offset) == offset;
}