terrain_estimator.cpp
11.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file terrain_estimator.cpp
* Function for fusing rangefinder measurements to estimate terrain vertical position/
*
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::initHagl()
{
bool initialized = false;
if (!_control_status.flags.in_air) {
// if on ground, do not trust the range sensor, but assume a ground clearance
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance;
// use the ground clearance value as our uncertainty
_terrain_var = sq(_params.rng_gnd_clearance);
_time_last_fake_hagl_fuse = _time_last_imu;
initialized = true;
} else if (shouldUseRangeFinderForHagl()
&& _range_sensor.isDataHealthy()) {
// if we have a fresh measurement, use it to initialise the terrain estimator
_terrain_vpos = _state.pos(2) + _range_sensor.getDistBottom();
// initialise state variance to variance of measurement
_terrain_var = sq(_params.range_noise);
// success
initialized = true;
} else if (shouldUseOpticalFlowForHagl()
&& _flow_for_terrain_data_ready) {
// initialise terrain vertical position to origin as this is the best guess we have
_terrain_vpos = fmaxf(0.0f, _state.pos(2));
_terrain_var = 100.0f;
initialized = true;
} else {
// no information - cannot initialise
}
if (initialized) {
// has initialized with valid data
_time_last_hagl_fuse = _time_last_imu;
}
return initialized;
}
void Ekf::runTerrainEstimator()
{
// If we are on ground, store the local position and time to use as a reference
if (!_control_status.flags.in_air) {
_last_on_ground_posD = _state.pos(2);
}
// Perform initialisation check and
// on ground, continuously reset the terrain estimator
if (!_terrain_initialised || !_control_status.flags.in_air) {
_terrain_initialised = initHagl();
} else {
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle
// process noise due to errors in vehicle height estimate
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise);
// process noise due to terrain gradient
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient)
* (sq(_state.vel(0)) + sq(_state.vel(1)));
// limit the variance to prevent it becoming badly conditioned
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f);
// Fuse range finder data if available
if (shouldUseRangeFinderForHagl()
&& _range_sensor.isDataHealthy()) {
fuseHagl();
}
if (shouldUseOpticalFlowForHagl()
&& _flow_for_terrain_data_ready) {
fuseFlowForTerrain();
_flow_for_terrain_data_ready = false;
}
// constrain _terrain_vpos to be a minimum of _params.rng_gnd_clearance larger than _state.pos(2)
if (_terrain_vpos - _state.pos(2) < _params.rng_gnd_clearance) {
_terrain_vpos = _params.rng_gnd_clearance + _state.pos(2);
}
}
updateTerrainValidity();
}
void Ekf::fuseHagl()
{
// get a height above ground measurement from the range finder assuming a flat earth
const float meas_hagl = _range_sensor.getDistBottom();
// predict the hagl from the vehicle position and terrain height
const float pred_hagl = _terrain_vpos - _state.pos(2);
// calculate the innovation
_hagl_innov = pred_hagl - meas_hagl;
// calculate the observation variance adding the variance of the vehicles own height uncertainty
const float obs_variance = fmaxf(P(9,9) * _params.vehicle_variance_scaler, 0.0f)
+ sq(_params.range_noise)
+ sq(_params.range_noise_scaler * _range_sensor.getRange());
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance);
// perform an innovation consistency check and only fuse data if it passes
const float gate_size = fmaxf(_params.range_innov_gate, 1.0f);
_hagl_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var);
if (_hagl_test_ratio <= 1.0f) {
// calculate the Kalman gain
const float gain = _terrain_var / _hagl_innov_var;
// correct the state
_terrain_vpos -= gain * _hagl_innov;
// correct the variance
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f);
// record last successful fusion event
_time_last_hagl_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_hagl = false;
} else {
// If we have been rejecting range data for too long, reset to measurement
const uint64_t timeout = static_cast<uint64_t>(_params.terrain_timeout * 1e6f);
if (isTimedOut(_time_last_hagl_fuse, timeout)) {
_terrain_vpos = _state.pos(2) + meas_hagl;
_terrain_var = obs_variance;
_terrain_vpos_reset_counter++;
} else {
_innov_check_fail_status.flags.reject_hagl = true;
}
}
}
void Ekf::fuseFlowForTerrain()
{
// calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed
// correct for gyro bias errors in the data used to do the motion compensation
// Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis.
const Vector2f opt_flow_rate = _flow_compensated_XY_rad / _flow_sample_delayed.dt + Vector2f(_flow_gyro_bias);
// get latest estimated orientation
const float q0 = _state.quat_nominal(0);
const float q1 = _state.quat_nominal(1);
const float q2 = _state.quat_nominal(2);
const float q3 = _state.quat_nominal(3);
// calculate the optical flow observation variance
const float R_LOS = calcOptFlowMeasVar();
// get rotation matrix from earth to body
const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal);
// calculate the sensor position relative to the IMU
const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body;
// calculate the velocity of the sensor relative to the imu in body frame
// Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign
const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body;
// calculate the velocity of the sensor in the earth frame
const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body;
// rotate into body frame
const Vector3f vel_body = earth_to_body * vel_rel_earth;
const float t0 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3;
// constrain terrain to minimum allowed value and predict height above ground
_terrain_vpos = fmaxf(_terrain_vpos, _params.rng_gnd_clearance + _state.pos(2));
const float pred_hagl_inv = 1.f / (_terrain_vpos - _state.pos(2));
// Calculate observation matrix for flow around the vehicle x axis
const float Hx = vel_body(1) * t0 * pred_hagl_inv * pred_hagl_inv;
// Constrain terrain variance to be non-negative
_terrain_var = fmaxf(_terrain_var, 0.0f);
// Cacluate innovation variance
_flow_innov_var(0) = Hx * Hx * _terrain_var + R_LOS;
// calculate the kalman gain for the flow x measurement
const float Kx = _terrain_var * Hx / _flow_innov_var(0);
// calculate prediced optical flow about x axis
const float pred_flow_x = vel_body(1) * earth_to_body(2, 2) * pred_hagl_inv;
// calculate flow innovation (x axis)
_flow_innov(0) = pred_flow_x - opt_flow_rate(0);
// calculate correction term for terrain variance
const float KxHxP = Kx * Hx * _terrain_var;
// innovation consistency check
const float gate_size = fmaxf(_params.flow_innov_gate, 1.0f);
float flow_test_ratio = sq(_flow_innov(0)) / (sq(gate_size) * _flow_innov_var(0));
// do not perform measurement update if badly conditioned
if (flow_test_ratio <= 1.0f) {
_terrain_vpos += Kx * _flow_innov(0);
// guard against negative variance
_terrain_var = fmaxf(_terrain_var - KxHxP, 0.0f);
_time_last_flow_terrain_fuse = _time_last_imu;
}
// Calculate observation matrix for flow around the vehicle y axis
const float Hy = -vel_body(0) * t0 * pred_hagl_inv * pred_hagl_inv;
// Calculuate innovation variance
_flow_innov_var(1) = Hy * Hy * _terrain_var + R_LOS;
// calculate the kalman gain for the flow y measurement
const float Ky = _terrain_var * Hy / _flow_innov_var(1);
// calculate prediced optical flow about y axis
const float pred_flow_y = -vel_body(0) * earth_to_body(2, 2) * pred_hagl_inv;
// calculate flow innovation (y axis)
_flow_innov(1) = pred_flow_y - opt_flow_rate(1);
// calculate correction term for terrain variance
const float KyHyP = Ky * Hy * _terrain_var;
// innovation consistency check
flow_test_ratio = sq(_flow_innov(1)) / (sq(gate_size) * _flow_innov_var(1));
if (flow_test_ratio <= 1.0f) {
_terrain_vpos += Ky * _flow_innov(1);
// guard against negative variance
_terrain_var = fmaxf(_terrain_var - KyHyP, 0.0f);
_time_last_flow_terrain_fuse = _time_last_imu;
}
}
void Ekf::updateTerrainValidity()
{
// we have been fusing range finder measurements in the last 5 seconds
const bool recent_range_fusion = isRecent(_time_last_hagl_fuse, (uint64_t)5e6);
// we have been fusing optical flow measurements for terrain estimation within the last 5 seconds
// this can only be the case if the main filter does not fuse optical flow
const bool recent_flow_for_terrain_fusion = isRecent(_time_last_flow_terrain_fuse, (uint64_t)5e6);
_hagl_valid = (_terrain_initialised && (recent_range_fusion || recent_flow_for_terrain_fusion));
_hagl_sensor_status.flags.range_finder = shouldUseRangeFinderForHagl()
&& recent_range_fusion
&& (_time_last_fake_hagl_fuse != _time_last_hagl_fuse);
_hagl_sensor_status.flags.flow = shouldUseOpticalFlowForHagl() && recent_flow_for_terrain_fusion;
}