mag_fusion.cpp
36.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file heading_fusion.cpp
* Magnetometer fusion methods.
* Equations generated using EKF/python/ekf_derivation/main.py
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseMag()
{
// assign intermediate variables
const float &q0 = _state.quat_nominal(0);
const float &q1 = _state.quat_nominal(1);
const float &q2 = _state.quat_nominal(2);
const float &q3 = _state.quat_nominal(3);
const float &magN = _state.mag_I(0);
const float &magE = _state.mag_I(1);
const float &magD = _state.mag_I(2);
// XYZ Measurement uncertainty. Need to consider timing errors for fast rotations
const float R_MAG = sq(fmaxf(_params.mag_noise, 0.0f));
// calculate intermediate variables used for X axis innovation variance, observation Jacobians and Kalman gains
const char* numerical_error_covariance_reset_string = "numerical error - covariance reset";
const float HKX0 = -magD*q2 + magE*q3 + magN*q0;
const float HKX1 = magD*q3 + magE*q2 + magN*q1;
const float HKX2 = magE*q1;
const float HKX3 = magD*q0;
const float HKX4 = magN*q2;
const float HKX5 = magD*q1 + magE*q0 - magN*q3;
const float HKX6 = ecl::powf(q0, 2) + ecl::powf(q1, 2) - ecl::powf(q2, 2) - ecl::powf(q3, 2);
const float HKX7 = q0*q3 + q1*q2;
const float HKX8 = q1*q3;
const float HKX9 = q0*q2;
const float HKX10 = 2*HKX7;
const float HKX11 = -2*HKX8 + 2*HKX9;
const float HKX12 = 2*HKX1;
const float HKX13 = 2*HKX0;
const float HKX14 = -2*HKX2 + 2*HKX3 + 2*HKX4;
const float HKX15 = 2*HKX5;
const float HKX16 = HKX10*P(0,17) - HKX11*P(0,18) + HKX12*P(0,1) + HKX13*P(0,0) - HKX14*P(0,2) + HKX15*P(0,3) + HKX6*P(0,16) + P(0,19);
const float HKX17 = HKX10*P(16,17) - HKX11*P(16,18) + HKX12*P(1,16) + HKX13*P(0,16) - HKX14*P(2,16) + HKX15*P(3,16) + HKX6*P(16,16) + P(16,19);
const float HKX18 = HKX10*P(17,18) - HKX11*P(18,18) + HKX12*P(1,18) + HKX13*P(0,18) - HKX14*P(2,18) + HKX15*P(3,18) + HKX6*P(16,18) + P(18,19);
const float HKX19 = HKX10*P(2,17) - HKX11*P(2,18) + HKX12*P(1,2) + HKX13*P(0,2) - HKX14*P(2,2) + HKX15*P(2,3) + HKX6*P(2,16) + P(2,19);
const float HKX20 = HKX10*P(17,17) - HKX11*P(17,18) + HKX12*P(1,17) + HKX13*P(0,17) - HKX14*P(2,17) + HKX15*P(3,17) + HKX6*P(16,17) + P(17,19);
const float HKX21 = HKX10*P(3,17) - HKX11*P(3,18) + HKX12*P(1,3) + HKX13*P(0,3) - HKX14*P(2,3) + HKX15*P(3,3) + HKX6*P(3,16) + P(3,19);
const float HKX22 = HKX10*P(1,17) - HKX11*P(1,18) + HKX12*P(1,1) + HKX13*P(0,1) - HKX14*P(1,2) + HKX15*P(1,3) + HKX6*P(1,16) + P(1,19);
const float HKX23 = HKX10*P(17,19) - HKX11*P(18,19) + HKX12*P(1,19) + HKX13*P(0,19) - HKX14*P(2,19) + HKX15*P(3,19) + HKX6*P(16,19) + P(19,19);
_mag_innov_var(0) = HKX10*HKX20 - HKX11*HKX18 + HKX12*HKX22 + HKX13*HKX16 - HKX14*HKX19 + HKX15*HKX21 + HKX17*HKX6 + HKX23 + R_MAG;
if (_mag_innov_var(0) < R_MAG) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_mag_x = true;
// we need to re-initialise covariances and abort this fusion step
resetMagRelatedCovariances();
ECL_ERR("magX %s", numerical_error_covariance_reset_string);
return;
}
_fault_status.flags.bad_mag_x = false;
const float HKX24 = 1.0F/_mag_innov_var(0);
// intermediate variables for calculation of innovations variances for Y and Z axes
// don't calculate all terms needed for observation jacobians and Kalman gains because
// these will have to be recalculated when the X and Y axes are fused
const float IV0 = q0*q1;
const float IV1 = q2*q3;
const float IV2 = 2*IV0 + 2*IV1;
const float IV3 = 2*q0*q3 - 2*q1*q2;
const float IV4 = 2*magD*q3 + 2*magE*q2 + 2*magN*q1;
const float IV5 = 2*magD*q1 + 2*magE*q0 - 2*magN*q3;
const float IV6 = 2*magD*q0 - 2*magE*q1 + 2*magN*q2;
const float IV7 = -2*magD*q2 + 2*magE*q3 + 2*magN*q0;
const float IV8 = ecl::powf(q2, 2);
const float IV9 = ecl::powf(q3, 2);
const float IV10 = ecl::powf(q0, 2) - ecl::powf(q1, 2);
const float IV11 = IV10 + IV8 - IV9;
const float IV12 = IV7*P(2,3);
const float IV13 = IV5*P(0,1);
const float IV14 = IV6*P(0,1);
const float IV15 = IV4*P(2,3);
const float IV16 = 2*q0*q2 + 2*q1*q3;
const float IV17 = 2*IV0 - 2*IV1;
const float IV18 = IV10 - IV8 + IV9;
_mag_innov_var(1) = IV11*P(17,20) + IV11*(IV11*P(17,17) + IV2*P(17,18) - IV3*P(16,17) + IV4*P(2,17) + IV5*P(0,17) + IV6*P(1,17) - IV7*P(3,17) + P(17,20)) + IV2*P(18,20) + IV2*(IV11*P(17,18) + IV2*P(18,18) - IV3*P(16,18) + IV4*P(2,18) + IV5*P(0,18) + IV6*P(1,18) - IV7*P(3,18) + P(18,20)) - IV3*P(16,20) - IV3*(IV11*P(16,17) + IV2*P(16,18) - IV3*P(16,16) + IV4*P(2,16) + IV5*P(0,16) + IV6*P(1,16) - IV7*P(3,16) + P(16,20)) + IV4*P(2,20) + IV4*(IV11*P(2,17) - IV12 + IV2*P(2,18) - IV3*P(2,16) + IV4*P(2,2) + IV5*P(0,2) + IV6*P(1,2) + P(2,20)) + IV5*P(0,20) + IV5*(IV11*P(0,17) + IV14 + IV2*P(0,18) - IV3*P(0,16) + IV4*P(0,2) + IV5*P(0,0) - IV7*P(0,3) + P(0,20)) + IV6*P(1,20) + IV6*(IV11*P(1,17) + IV13 + IV2*P(1,18) - IV3*P(1,16) + IV4*P(1,2) + IV6*P(1,1) - IV7*P(1,3) + P(1,20)) - IV7*P(3,20) - IV7*(IV11*P(3,17) + IV15 + IV2*P(3,18) - IV3*P(3,16) + IV5*P(0,3) + IV6*P(1,3) - IV7*P(3,3) + P(3,20)) + P(20,20) + R_MAG;
_mag_innov_var(2) = IV16*P(16,21) + IV16*(IV16*P(16,16) - IV17*P(16,17) + IV18*P(16,18) + IV4*P(3,16) - IV5*P(1,16) + IV6*P(0,16) + IV7*P(2,16) + P(16,21)) - IV17*P(17,21) - IV17*(IV16*P(16,17) - IV17*P(17,17) + IV18*P(17,18) + IV4*P(3,17) - IV5*P(1,17) + IV6*P(0,17) + IV7*P(2,17) + P(17,21)) + IV18*P(18,21) + IV18*(IV16*P(16,18) - IV17*P(17,18) + IV18*P(18,18) + IV4*P(3,18) - IV5*P(1,18) + IV6*P(0,18) + IV7*P(2,18) + P(18,21)) + IV4*P(3,21) + IV4*(IV12 + IV16*P(3,16) - IV17*P(3,17) + IV18*P(3,18) + IV4*P(3,3) - IV5*P(1,3) + IV6*P(0,3) + P(3,21)) - IV5*P(1,21) - IV5*(IV14 + IV16*P(1,16) - IV17*P(1,17) + IV18*P(1,18) + IV4*P(1,3) - IV5*P(1,1) + IV7*P(1,2) + P(1,21)) + IV6*P(0,21) + IV6*(-IV13 + IV16*P(0,16) - IV17*P(0,17) + IV18*P(0,18) + IV4*P(0,3) + IV6*P(0,0) + IV7*P(0,2) + P(0,21)) + IV7*P(2,21) + IV7*(IV15 + IV16*P(2,16) - IV17*P(2,17) + IV18*P(2,18) - IV5*P(1,2) + IV6*P(0,2) + IV7*P(2,2) + P(2,21)) + P(21,21) + R_MAG;
// chedk innovation variances for being badly conditioned
if (_mag_innov_var(1) < R_MAG) {
// the innovation variance contribution from the state covariances is negtive which means the covariance matrix is badly conditioned
_fault_status.flags.bad_mag_y = true;
// we need to re-initialise covariances and abort this fusion step
resetMagRelatedCovariances();
ECL_ERR("magY %s", numerical_error_covariance_reset_string);
return;
}
_fault_status.flags.bad_mag_y = false;
if (_mag_innov_var(2) < R_MAG) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_mag_z = true;
// we need to re-initialise covariances and abort this fusion step
resetMagRelatedCovariances();
ECL_ERR("magZ %s", numerical_error_covariance_reset_string);
return;
}
_fault_status.flags.bad_mag_z = false;
// rotate magnetometer earth field state into body frame
const Dcmf R_to_body = quatToInverseRotMat(_state.quat_nominal);
const Vector3f mag_I_rot = R_to_body * _state.mag_I;
// compute magnetometer innovations
_mag_innov = mag_I_rot + _state.mag_B - _mag_sample_delayed.mag;
// do not use the synthesized measurement for the magnetomter Z component for 3D fusion
if (_control_status.flags.synthetic_mag_z) {
_mag_innov(2) = 0.0f;
}
// Perform an innovation consistency check and report the result
bool all_innovation_checks_passed = true;
for (uint8_t index = 0; index <= 2; index++) {
_mag_test_ratio(index) = sq(_mag_innov(index)) / (sq(math::max(_params.mag_innov_gate, 1.0f)) * _mag_innov_var(index));
if (_mag_test_ratio(index) > 1.0f) {
all_innovation_checks_passed = false;
_innov_check_fail_status.value |= (1 << (index + 3));
} else {
_innov_check_fail_status.value &= ~(1 << (index + 3));
}
}
// we are no longer using heading fusion so set the reported test level to zero
_yaw_test_ratio = 0.0f;
// if any axis fails, abort the mag fusion
if (!all_innovation_checks_passed) {
return;
}
// For the first few seconds after in-flight alignment we allow the magnetic field state estimates to stabilise
// before they are used to constrain heading drift
const bool update_all_states = ((_imu_sample_delayed.time_us - _flt_mag_align_start_time) > (uint64_t)5e6);
// Observation jacobian and Kalman gain vectors
SparseVector24f<0,1,2,3,16,17,18,19,20,21> Hfusion;
Vector24f Kfusion;
// update the states and covariance using sequential fusion of the magnetometer components
for (uint8_t index = 0; index <= 2; index++) {
// Calculate Kalman gains and observation jacobians
if (index == 0) {
// Calculate X axis observation jacobians
Hfusion.at<0>() = 2*HKX0;
Hfusion.at<1>() = 2*HKX1;
Hfusion.at<2>() = 2*HKX2 - 2*HKX3 - 2*HKX4;
Hfusion.at<3>() = 2*HKX5;
Hfusion.at<16>() = HKX6;
Hfusion.at<17>() = 2*HKX7;
Hfusion.at<18>() = 2*HKX8 - 2*HKX9;
Hfusion.at<19>() = 1;
// Calculate X axis Kalman gains
if (update_all_states) {
Kfusion(0) = HKX16*HKX24;
Kfusion(1) = HKX22*HKX24;
Kfusion(2) = HKX19*HKX24;
Kfusion(3) = HKX21*HKX24;
for (unsigned row = 4; row <= 15; row++) {
Kfusion(row) = HKX24*(HKX10*P(row,17) - HKX11*P(row,18) + HKX12*P(1,row) + HKX13*P(0,row) - HKX14*P(2,row) + HKX15*P(3,row) + HKX6*P(row,16) + P(row,19));
}
for (unsigned row = 22; row <= 23; row++) {
Kfusion(row) = HKX24*(HKX10*P(17,row) - HKX11*P(18,row) + HKX12*P(1,row) + HKX13*P(0,row) - HKX14*P(2,row) + HKX15*P(3,row) + HKX6*P(16,row) + P(19,row));
}
}
Kfusion(16) = HKX17*HKX24;
Kfusion(17) = HKX20*HKX24;
Kfusion(18) = HKX18*HKX24;
Kfusion(19) = HKX23*HKX24;
for (unsigned row = 20; row <= 21; row++) {
Kfusion(row) = HKX24*(HKX10*P(17,row) - HKX11*P(18,row) + HKX12*P(1,row) + HKX13*P(0,row) - HKX14*P(2,row) + HKX15*P(3,row) + HKX6*P(16,row) + P(19,row));
}
} else if (index == 1) {
// recalculate innovation variance becasue states and covariances have changed due to previous fusion
const float HKY0 = magD*q1 + magE*q0 - magN*q3;
const float HKY1 = magD*q0 - magE*q1 + magN*q2;
const float HKY2 = magD*q3 + magE*q2 + magN*q1;
const float HKY3 = magD*q2;
const float HKY4 = magE*q3;
const float HKY5 = magN*q0;
const float HKY6 = q1*q2;
const float HKY7 = q0*q3;
const float HKY8 = ecl::powf(q0, 2) - ecl::powf(q1, 2) + ecl::powf(q2, 2) - ecl::powf(q3, 2);
const float HKY9 = q0*q1 + q2*q3;
const float HKY10 = 2*HKY9;
const float HKY11 = -2*HKY6 + 2*HKY7;
const float HKY12 = 2*HKY2;
const float HKY13 = 2*HKY0;
const float HKY14 = 2*HKY1;
const float HKY15 = -2*HKY3 + 2*HKY4 + 2*HKY5;
const float HKY16 = HKY10*P(0,18) - HKY11*P(0,16) + HKY12*P(0,2) + HKY13*P(0,0) + HKY14*P(0,1) - HKY15*P(0,3) + HKY8*P(0,17) + P(0,20);
const float HKY17 = HKY10*P(17,18) - HKY11*P(16,17) + HKY12*P(2,17) + HKY13*P(0,17) + HKY14*P(1,17) - HKY15*P(3,17) + HKY8*P(17,17) + P(17,20);
const float HKY18 = HKY10*P(16,18) - HKY11*P(16,16) + HKY12*P(2,16) + HKY13*P(0,16) + HKY14*P(1,16) - HKY15*P(3,16) + HKY8*P(16,17) + P(16,20);
const float HKY19 = HKY10*P(3,18) - HKY11*P(3,16) + HKY12*P(2,3) + HKY13*P(0,3) + HKY14*P(1,3) - HKY15*P(3,3) + HKY8*P(3,17) + P(3,20);
const float HKY20 = HKY10*P(18,18) - HKY11*P(16,18) + HKY12*P(2,18) + HKY13*P(0,18) + HKY14*P(1,18) - HKY15*P(3,18) + HKY8*P(17,18) + P(18,20);
const float HKY21 = HKY10*P(1,18) - HKY11*P(1,16) + HKY12*P(1,2) + HKY13*P(0,1) + HKY14*P(1,1) - HKY15*P(1,3) + HKY8*P(1,17) + P(1,20);
const float HKY22 = HKY10*P(2,18) - HKY11*P(2,16) + HKY12*P(2,2) + HKY13*P(0,2) + HKY14*P(1,2) - HKY15*P(2,3) + HKY8*P(2,17) + P(2,20);
const float HKY23 = HKY10*P(18,20) - HKY11*P(16,20) + HKY12*P(2,20) + HKY13*P(0,20) + HKY14*P(1,20) - HKY15*P(3,20) + HKY8*P(17,20) + P(20,20);
_mag_innov_var(1) = (HKY10*HKY20 - HKY11*HKY18 + HKY12*HKY22 + HKY13*HKY16 + HKY14*HKY21 - HKY15*HKY19 + HKY17*HKY8 + HKY23 + R_MAG);
if (_mag_innov_var(1) < R_MAG) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_mag_y = true;
// we need to re-initialise covariances and abort this fusion step
resetMagRelatedCovariances();
ECL_ERR("magY %s", numerical_error_covariance_reset_string);
return;
}
const float HKY24 = 1.0F/_mag_innov_var(1);
// Calculate Y axis observation jacobians
Hfusion.setZero();
Hfusion.at<0>() = 2*HKY0;
Hfusion.at<1>() = 2*HKY1;
Hfusion.at<2>() = 2*HKY2;
Hfusion.at<3>() = 2*HKY3 - 2*HKY4 - 2*HKY5;
Hfusion.at<16>() = 2*HKY6 - 2*HKY7;
Hfusion.at<17>() = HKY8;
Hfusion.at<18>() = 2*HKY9;
Hfusion.at<20>() = 1;
// Calculate Y axis Kalman gains
if (update_all_states) {
Kfusion(0) = HKY16*HKY24;
Kfusion(1) = HKY21*HKY24;
Kfusion(2) = HKY22*HKY24;
Kfusion(3) = HKY19*HKY24;
for (unsigned row = 4; row <= 15; row++) {
Kfusion(row) = HKY24*(HKY10*P(row,18) - HKY11*P(row,16) + HKY12*P(2,row) + HKY13*P(0,row) + HKY14*P(1,row) - HKY15*P(3,row) + HKY8*P(row,17) + P(row,20));
}
for (unsigned row = 22; row <= 23; row++) {
Kfusion(row) = HKY24*(HKY10*P(18,row) - HKY11*P(16,row) + HKY12*P(2,row) + HKY13*P(0,row) + HKY14*P(1,row) - HKY15*P(3,row) + HKY8*P(17,row) + P(20,row));
}
}
Kfusion(16) = HKY18*HKY24;
Kfusion(17) = HKY17*HKY24;
Kfusion(18) = HKY20*HKY24;
Kfusion(19) = HKY24*(HKY10*P(18,19) - HKY11*P(16,19) + HKY12*P(2,19) + HKY13*P(0,19) + HKY14*P(1,19) - HKY15*P(3,19) + HKY8*P(17,19) + P(19,20));
Kfusion(20) = HKY23*HKY24;
Kfusion(21) = HKY24*(HKY10*P(18,21) - HKY11*P(16,21) + HKY12*P(2,21) + HKY13*P(0,21) + HKY14*P(1,21) - HKY15*P(3,21) + HKY8*P(17,21) + P(20,21));
} else if (index == 2) {
// we do not fuse synthesized magnetomter measurements when doing 3D fusion
if (_control_status.flags.synthetic_mag_z) {
continue;
}
// recalculate innovation variance becasue states and covariances have changed due to previous fusion
const float HKZ0 = magD*q0 - magE*q1 + magN*q2;
const float HKZ1 = magN*q3;
const float HKZ2 = magD*q1;
const float HKZ3 = magE*q0;
const float HKZ4 = -magD*q2 + magE*q3 + magN*q0;
const float HKZ5 = magD*q3 + magE*q2 + magN*q1;
const float HKZ6 = q0*q2 + q1*q3;
const float HKZ7 = q2*q3;
const float HKZ8 = q0*q1;
const float HKZ9 = ecl::powf(q0, 2) - ecl::powf(q1, 2) - ecl::powf(q2, 2) + ecl::powf(q3, 2);
const float HKZ10 = 2*HKZ6;
const float HKZ11 = -2*HKZ7 + 2*HKZ8;
const float HKZ12 = 2*HKZ5;
const float HKZ13 = 2*HKZ0;
const float HKZ14 = -2*HKZ1 + 2*HKZ2 + 2*HKZ3;
const float HKZ15 = 2*HKZ4;
const float HKZ16 = HKZ10*P(0,16) - HKZ11*P(0,17) + HKZ12*P(0,3) + HKZ13*P(0,0) - HKZ14*P(0,1) + HKZ15*P(0,2) + HKZ9*P(0,18) + P(0,21);
const float HKZ17 = HKZ10*P(16,18) - HKZ11*P(17,18) + HKZ12*P(3,18) + HKZ13*P(0,18) - HKZ14*P(1,18) + HKZ15*P(2,18) + HKZ9*P(18,18) + P(18,21);
const float HKZ18 = HKZ10*P(16,17) - HKZ11*P(17,17) + HKZ12*P(3,17) + HKZ13*P(0,17) - HKZ14*P(1,17) + HKZ15*P(2,17) + HKZ9*P(17,18) + P(17,21);
const float HKZ19 = HKZ10*P(1,16) - HKZ11*P(1,17) + HKZ12*P(1,3) + HKZ13*P(0,1) - HKZ14*P(1,1) + HKZ15*P(1,2) + HKZ9*P(1,18) + P(1,21);
const float HKZ20 = HKZ10*P(16,16) - HKZ11*P(16,17) + HKZ12*P(3,16) + HKZ13*P(0,16) - HKZ14*P(1,16) + HKZ15*P(2,16) + HKZ9*P(16,18) + P(16,21);
const float HKZ21 = HKZ10*P(3,16) - HKZ11*P(3,17) + HKZ12*P(3,3) + HKZ13*P(0,3) - HKZ14*P(1,3) + HKZ15*P(2,3) + HKZ9*P(3,18) + P(3,21);
const float HKZ22 = HKZ10*P(2,16) - HKZ11*P(2,17) + HKZ12*P(2,3) + HKZ13*P(0,2) - HKZ14*P(1,2) + HKZ15*P(2,2) + HKZ9*P(2,18) + P(2,21);
const float HKZ23 = HKZ10*P(16,21) - HKZ11*P(17,21) + HKZ12*P(3,21) + HKZ13*P(0,21) - HKZ14*P(1,21) + HKZ15*P(2,21) + HKZ9*P(18,21) + P(21,21);
_mag_innov_var(2) = (HKZ10*HKZ20 - HKZ11*HKZ18 + HKZ12*HKZ21 + HKZ13*HKZ16 - HKZ14*HKZ19 + HKZ15*HKZ22 + HKZ17*HKZ9 + HKZ23 + R_MAG);
if (_mag_innov_var(2) < R_MAG) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_mag_z = true;
// we need to re-initialise covariances and abort this fusion step
resetMagRelatedCovariances();
ECL_ERR("magZ %s", numerical_error_covariance_reset_string);
return;
}
const float HKZ24 = 1.0F/_mag_innov_var(2);
// calculate Z axis observation jacobians
Hfusion.setZero();
Hfusion.at<0>() = 2*HKZ0;
Hfusion.at<1>() = 2*HKZ1 - 2*HKZ2 - 2*HKZ3;
Hfusion.at<2>() = 2*HKZ4;
Hfusion.at<3>() = 2*HKZ5;
Hfusion.at<16>() = 2*HKZ6;
Hfusion.at<17>() = 2*HKZ7 - 2*HKZ8;
Hfusion.at<18>() = HKZ9;
Hfusion.at<21>() = 1;
// Calculate Z axis Kalman gains
if (update_all_states) {
Kfusion(0) = HKZ16*HKZ24;
Kfusion(1) = HKZ19*HKZ24;
Kfusion(2) = HKZ22*HKZ24;
Kfusion(3) = HKZ21*HKZ24;
for (unsigned row = 4; row <= 15; row++) {
Kfusion(row) = HKZ24*(HKZ10*P(row,16) - HKZ11*P(row,17) + HKZ12*P(3,row) + HKZ13*P(0,row) - HKZ14*P(1,row) + HKZ15*P(2,row) + HKZ9*P(row,18) + P(row,21));
}
for (unsigned row = 22; row <= 23; row++) {
Kfusion(row) = HKZ24*(HKZ10*P(16,row) - HKZ11*P(17,row) + HKZ12*P(3,row) + HKZ13*P(0,row) - HKZ14*P(1,row) + HKZ15*P(2,row) + HKZ9*P(18,row) + P(21,row));
}
}
Kfusion(16) = HKZ20*HKZ24;
Kfusion(17) = HKZ18*HKZ24;
Kfusion(18) = HKZ17*HKZ24;
for (unsigned row = 19; row <= 20; row++) {
Kfusion(row) = HKZ24*(HKZ10*P(16,row) - HKZ11*P(17,row) + HKZ12*P(3,row) + HKZ13*P(0,row) - HKZ14*P(1,row) + HKZ15*P(2,row) + HKZ9*P(18,row) + P(row,21));
}
Kfusion(21) = HKZ23*HKZ24;
}
const bool is_fused = measurementUpdate(Kfusion, Hfusion, _mag_innov(index));
if (index == 0) {
_fault_status.flags.bad_mag_x = !is_fused;
} else if (index == 1) {
_fault_status.flags.bad_mag_y = !is_fused;
} else if (index == 2) {
_fault_status.flags.bad_mag_z = !is_fused;
}
if (is_fused) {
limitDeclination();
}
}
}
void Ekf::fuseYaw321(float yaw, float yaw_variance, bool zero_innovation)
{
// assign intermediate state variables
const float &q0 = _state.quat_nominal(0);
const float &q1 = _state.quat_nominal(1);
const float &q2 = _state.quat_nominal(2);
const float &q3 = _state.quat_nominal(3);
const float R_YAW = fmaxf(yaw_variance, 1.0e-4f);
const float measurement = wrap_pi(yaw);
// calculate 321 yaw observation matrix
// choose A or B computational paths to avoid singularity in derivation at +-90 degrees yaw
bool canUseA = false;
const float SA0 = 2*q3;
const float SA1 = 2*q2;
const float SA2 = SA0*q0 + SA1*q1;
const float SA3 = sq(q0) + sq(q1) - sq(q2) - sq(q3);
float SA4, SA5_inv;
if (sq(SA3) > 1e-6f) {
SA4 = 1.0F/sq(SA3);
SA5_inv = sq(SA2)*SA4 + 1;
canUseA = fabsf(SA5_inv) > 1e-6f;
}
bool canUseB = false;
const float SB0 = 2*q0;
const float SB1 = 2*q1;
const float SB2 = SB0*q3 + SB1*q2;
const float SB4 = sq(q0) + sq(q1) - sq(q2) - sq(q3);
float SB3, SB5_inv;
if (sq(SB2) > 1e-6f) {
SB3 = 1.0F/sq(SB2);
SB5_inv = SB3*sq(SB4) + 1;
canUseB = fabsf(SB5_inv) > 1e-6f;
}
Vector4f H_YAW;
if (canUseA && (!canUseB || fabsf(SA5_inv) >= fabsf(SB5_inv))) {
const float SA5 = 1.0F/SA5_inv;
const float SA6 = 1.0F/SA3;
const float SA7 = SA2*SA4;
const float SA8 = 2*SA7;
const float SA9 = 2*SA6;
H_YAW(0) = SA5*(SA0*SA6 - SA8*q0);
H_YAW(1) = SA5*(SA1*SA6 - SA8*q1);
H_YAW(2) = SA5*(SA1*SA7 + SA9*q1);
H_YAW(3) = SA5*(SA0*SA7 + SA9*q0);
} else if (canUseB && (!canUseA || fabsf(SB5_inv) > fabsf(SA5_inv))) {
const float SB5 = 1.0F/SB5_inv;
const float SB6 = 1.0F/SB2;
const float SB7 = SB3*SB4;
const float SB8 = 2*SB7;
const float SB9 = 2*SB6;
H_YAW(0) = -SB5*(SB0*SB6 - SB8*q3);
H_YAW(1) = -SB5*(SB1*SB6 - SB8*q2);
H_YAW(2) = -SB5*(-SB1*SB7 - SB9*q2);
H_YAW(3) = -SB5*(-SB0*SB7 - SB9*q3);
} else {
return;
}
// calculate the yaw innovation and wrap to the interval between +-pi
float innovation;
if (zero_innovation) {
innovation = 0.0f;
} else {
innovation = wrap_pi(atan2f(_R_to_earth(1, 0), _R_to_earth(0, 0)) - measurement);
}
// define the innovation gate size
float innov_gate = math::max(_params.heading_innov_gate, 1.0f);
// Update the quaternion states and covariance matrix
updateQuaternion(innovation, R_YAW, innov_gate, H_YAW);
}
void Ekf::fuseYaw312(float yaw, float yaw_variance, bool zero_innovation)
{
// assign intermediate state variables
const float q0 = _state.quat_nominal(0);
const float q1 = _state.quat_nominal(1);
const float q2 = _state.quat_nominal(2);
const float q3 = _state.quat_nominal(3);
const float R_YAW = fmaxf(yaw_variance, 1.0e-4f);
const float measurement = wrap_pi(yaw);
// calculate 312 yaw observation matrix
// choose A or B computational paths to avoid singularity in derivation at +-90 degrees yaw
bool canUseA = false;
const float SA0 = 2*q3;
const float SA1 = 2*q2;
const float SA2 = SA0*q0 - SA1*q1;
const float SA3 = sq(q0) - sq(q1) + sq(q2) - sq(q3);
float SA4, SA5_inv;
if (sq(SA3) > 1e-6f) {
SA4 = 1.0F/sq(SA3);
SA5_inv = sq(SA2)*SA4 + 1;
canUseA = fabsf(SA5_inv) > 1e-6f;
}
bool canUseB = false;
const float SB0 = 2*q0;
const float SB1 = 2*q1;
const float SB2 = -SB0*q3 + SB1*q2;
const float SB4 = -sq(q0) + sq(q1) - sq(q2) + sq(q3);
float SB3, SB5_inv;
if (sq(SB2) > 1e-6f) {
SB3 = 1.0F/sq(SB2);
SB5_inv = SB3*sq(SB4) + 1;
canUseB = fabsf(SB5_inv) > 1e-6f;
}
Vector4f H_YAW;
if (canUseA && (!canUseB || fabsf(SA5_inv) >= fabsf(SB5_inv))) {
const float SA5 = 1.0F/SA5_inv;
const float SA6 = 1.0F/SA3;
const float SA7 = SA2*SA4;
const float SA8 = 2*SA7;
const float SA9 = 2*SA6;
H_YAW(0) = SA5*(SA0*SA6 - SA8*q0);
H_YAW(1) = SA5*(-SA1*SA6 + SA8*q1);
H_YAW(2) = SA5*(-SA1*SA7 - SA9*q1);
H_YAW(3) = SA5*(SA0*SA7 + SA9*q0);
} else if (canUseB && (!canUseA || fabsf(SB5_inv) > fabsf(SA5_inv))) {
const float SB5 = 1.0F/SB5_inv;
const float SB6 = 1.0F/SB2;
const float SB7 = SB3*SB4;
const float SB8 = 2*SB7;
const float SB9 = 2*SB6;
H_YAW(0) = -SB5*(-SB0*SB6 + SB8*q3);
H_YAW(1) = -SB5*(SB1*SB6 - SB8*q2);
H_YAW(2) = -SB5*(-SB1*SB7 - SB9*q2);
H_YAW(3) = -SB5*(SB0*SB7 + SB9*q3);
} else {
return;
}
float innovation;
if (zero_innovation) {
innovation = 0.0f;
} else {
// calculate the the innovation and wrap to the interval between +-pi
innovation = wrap_pi(atan2f(-_R_to_earth(0, 1), _R_to_earth(1, 1)) - measurement);
}
// define the innovation gate size
float innov_gate = math::max(_params.heading_innov_gate, 1.0f);
// Update the quaternion states and covariance matrix
updateQuaternion(innovation, R_YAW, innov_gate, H_YAW);
}
// update quaternion states and covariances using the yaw innovation, yaw observation variance and yaw Jacobian
void Ekf::updateQuaternion(const float innovation, const float variance, const float gate_sigma, const Vector4f& yaw_jacobian)
{
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 4 elements in H are non zero
// calculate the innovation variance
_heading_innov_var = variance;
for (unsigned row = 0; row <= 3; row++) {
float tmp = 0.0f;
for (uint8_t col = 0; col <= 3; col++) {
tmp += P(row,col) * yaw_jacobian(col);
}
_heading_innov_var += yaw_jacobian(row) * tmp;
}
float heading_innov_var_inv;
// check if the innovation variance calculation is badly conditioned
if (_heading_innov_var >= variance) {
// the innovation variance contribution from the state covariances is not negative, no fault
_fault_status.flags.bad_hdg = false;
heading_innov_var_inv = 1.0f / _heading_innov_var;
} else {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_hdg = true;
// we reinitialise the covariance matrix and abort this fusion step
initialiseCovariance();
ECL_ERR("mag yaw fusion numerical error - covariance reset");
return;
}
// calculate the Kalman gains
// only calculate gains for states we are using
Vector24f Kfusion;
for (uint8_t row = 0; row <= 15; row++) {
for (uint8_t col = 0; col <= 3; col++) {
Kfusion(row) += P(row,col) * yaw_jacobian(col);
}
Kfusion(row) *= heading_innov_var_inv;
}
if (_control_status.flags.wind) {
for (uint8_t row = 22; row <= 23; row++) {
for (uint8_t col = 0; col <= 3; col++) {
Kfusion(row) += P(row,col) * yaw_jacobian(col);
}
Kfusion(row) *= heading_innov_var_inv;
}
}
// innovation test ratio
_yaw_test_ratio = sq(innovation) / (sq(gate_sigma) * _heading_innov_var);
// we are no longer using 3-axis fusion so set the reported test levels to zero
_mag_test_ratio.setZero();
// set the magnetometer unhealthy if the test fails
if (_yaw_test_ratio > 1.0f) {
_innov_check_fail_status.flags.reject_yaw = true;
// if we are in air we don't want to fuse the measurement
// we allow to use it when on the ground because the large innovation could be caused
// by interference or a large initial gyro bias
if (!_control_status.flags.in_air && isTimedOut(_time_last_in_air, (uint64_t)5e6)) {
// constrain the innovation to the maximum set by the gate
// we need to delay this forced fusion to avoid starting it
// immediately after touchdown, when the drone is still armed
float gate_limit = sqrtf((sq(gate_sigma) * _heading_innov_var));
_heading_innov = math::constrain(innovation, -gate_limit, gate_limit);
} else {
return;
}
} else {
_innov_check_fail_status.flags.reject_yaw = false;
_heading_innov = innovation;
}
// apply covariance correction via P_new = (I -K*H)*P
// first calculate expression for KHP
// then calculate P - KHP
SquareMatrix24f KHP;
float KH[4];
for (unsigned row = 0; row < _k_num_states; row++) {
KH[0] = Kfusion(row) * yaw_jacobian(0);
KH[1] = Kfusion(row) * yaw_jacobian(1);
KH[2] = Kfusion(row) * yaw_jacobian(2);
KH[3] = Kfusion(row) * yaw_jacobian(3);
for (unsigned column = 0; column < _k_num_states; column++) {
float tmp = KH[0] * P(0,column);
tmp += KH[1] * P(1,column);
tmp += KH[2] * P(2,column);
tmp += KH[3] * P(3,column);
KHP(row,column) = tmp;
}
}
const bool healthy = checkAndFixCovarianceUpdate(KHP);
_fault_status.flags.bad_hdg = !healthy;
if (healthy) {
// apply the covariance corrections
P -= KHP;
fixCovarianceErrors(true);
// apply the state corrections
fuse(Kfusion, _heading_innov);
}
}
void Ekf::fuseHeading()
{
Vector3f mag_earth_pred;
float measured_hdg;
// Calculate the observation variance
float R_YAW;
if (_control_status.flags.mag_hdg) {
// using magnetic heading tuning parameter
R_YAW = sq(_params.mag_heading_noise);
} else if (_control_status.flags.ev_yaw) {
// using error estimate from external vision data
R_YAW = _ev_sample_delayed.angVar;
} else {
// default value
R_YAW = 0.01f;
}
// update transformation matrix from body to world frame using the current state estimate
_R_to_earth = Dcmf(_state.quat_nominal);
if (shouldUse321RotationSequence(_R_to_earth)) {
const float predicted_hdg = getEuler321Yaw(_R_to_earth);
if (_control_status.flags.mag_hdg) {
// Rotate the measurements into earth frame using the zero yaw angle
const Dcmf R_to_earth = updateEuler321YawInRotMat(0.f, _R_to_earth);
mag_earth_pred = R_to_earth * (_mag_sample_delayed.mag - _state.mag_B);
// the angle of the projection onto the horizontal gives the yaw angle
measured_hdg = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination();
} else if (_control_status.flags.ev_yaw) {
measured_hdg = getEuler321Yaw(_ev_sample_delayed.quat);
} else {
measured_hdg = predicted_hdg;
}
// handle special case where yaw measurement is unavailable
bool fuse_zero_innov = false;
if (_is_yaw_fusion_inhibited) {
// The yaw measurement cannot be trusted but we need to fuse something to prevent a badly
// conditioned covariance matrix developing over time.
if (!_control_status.flags.vehicle_at_rest) {
// Vehicle is not at rest so fuse a zero innovation if necessary to prevent
// unconstrained quaternion variance growth and record the predicted heading
// to use as an observation when movement ceases.
// TODO a better way of determining when this is necessary
const float sumQuatVar = P(0,0) + P(1,1) + P(2,2) + P(3,3);
if (sumQuatVar > _params.quat_max_variance) {
fuse_zero_innov = true;
R_YAW = 0.25f;
}
_last_static_yaw = predicted_hdg;
} else {
// Vehicle is at rest so use the last moving prediction as an observation
// to prevent the heading from drifting and to enable yaw gyro bias learning
// before takeoff.
measured_hdg = _last_static_yaw;
}
} else {
_last_static_yaw = predicted_hdg;
}
fuseYaw321(measured_hdg, R_YAW, fuse_zero_innov);
} else {
const float predicted_hdg = getEuler312Yaw(_R_to_earth);
if (_control_status.flags.mag_hdg) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
const Dcmf R_to_earth = updateEuler312YawInRotMat(0.f, _R_to_earth);
mag_earth_pred = R_to_earth * (_mag_sample_delayed.mag - _state.mag_B);
// the angle of the projection onto the horizontal gives the yaw angle
measured_hdg = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination();
} else if (_control_status.flags.ev_yaw) {
measured_hdg = getEuler312Yaw(_ev_sample_delayed.quat);
} else {
measured_hdg = predicted_hdg;
}
// handle special case where yaw measurement is unavailable
bool fuse_zero_innov = false;
if (_is_yaw_fusion_inhibited) {
// The yaw measurement cannot be trusted but we need to fuse something to prevent a badly
// conditioned covariance matrix developing over time.
if (!_control_status.flags.vehicle_at_rest) {
// Vehicle is not at rest so fuse a zero innovation if necessary to prevent
// unconstrained quaterniion variance growth and record the predicted heading
// to use as an observation when movement ceases.
// TODO a better way of determining when this is necessary
const float sumQuatVar = P(0,0) + P(1,1) + P(2,2) + P(3,3);
if (sumQuatVar > _params.quat_max_variance) {
fuse_zero_innov = true;
R_YAW = 0.25f;
}
_last_static_yaw = predicted_hdg;
} else {
// Vehicle is at rest so use the last moving prediction as an observation
// to prevent the heading from drifting and to enable yaw gyro bias learning
// before takeoff.
measured_hdg = _last_static_yaw;
}
} else {
_last_static_yaw = predicted_hdg;
}
fuseYaw312(measured_hdg, R_YAW, fuse_zero_innov);
}
}
void Ekf::fuseDeclination(float decl_sigma)
{
// assign intermediate state variables
const float &magN = _state.mag_I(0);
const float &magE = _state.mag_I(1);
// minimum North field strength before calculation becomes badly conditioned (T)
constexpr float N_field_min = 0.001f;
// observation variance (rad**2)
const float R_DECL = sq(decl_sigma);
// Calculate intermediate variables
if (fabsf(magN) < sq(N_field_min)) {
// calculation is badly conditioned close to +-90 deg declination
return;
}
const float HK0 = ecl::powf(magN, -2);
const float HK1 = HK0*ecl::powf(magE, 2) + 1.0F;
const float HK2 = 1.0F/HK1;
const float HK3 = 1.0F/magN;
const float HK4 = HK2*HK3;
const float HK5 = HK3*magE;
const float HK6 = HK5*P(16,17) - P(17,17);
const float HK7 = ecl::powf(HK1, -2);
const float HK8 = HK5*P(16,16) - P(16,17);
const float innovation_variance = -HK0*HK6*HK7 + HK7*HK8*magE/ecl::powf(magN, 3) + R_DECL;
float HK9;
if (innovation_variance > R_DECL) {
HK9 = HK4/innovation_variance;
} else {
// variance calculation is badly conditioned
return;
}
// Calculate the observation Jacobian
// Note only 2 terms are non-zero which can be used in matrix operations for calculation of Kalman gains and covariance update to significantly reduce cost
// Note Hfusion indices do not match state indices
SparseVector24f<16,17> Hfusion;
Hfusion.at<16>() = -HK0*HK2*magE;
Hfusion.at<17>() = HK4;
// Calculate the Kalman gains
Vector24f Kfusion;
for (unsigned row = 0; row <= 15; row++) {
Kfusion(row) = -HK9*(HK5*P(row,16) - P(row,17));
}
Kfusion(16) = -HK8*HK9;
Kfusion(17) = -HK6*HK9;
for (unsigned row = 18; row <= 23; row++) {
Kfusion(row) = -HK9*(HK5*P(16,row) - P(17,row));
}
const float innovation = math::constrain(atan2f(magE, magN) - getMagDeclination(), -0.5f, 0.5f);
const bool is_fused = measurementUpdate(Kfusion, Hfusion, innovation);
_fault_status.flags.bad_mag_decl = !is_fused;
if (is_fused) {
limitDeclination();
}
}
void Ekf::limitDeclination()
{
// get a reference value for the earth field declinaton and minimum plausible horizontal field strength
// set to 50% of the horizontal strength from geo tables if location is known
float decl_reference;
float h_field_min = 0.001f;
if (_params.mag_declination_source & MASK_USE_GEO_DECL) {
// use parameter value until GPS is available, then use value returned by geo library
if (_NED_origin_initialised || ISFINITE(_mag_declination_gps)) {
decl_reference = _mag_declination_gps;
h_field_min = fmaxf(h_field_min , 0.5f * _mag_strength_gps * cosf(_mag_inclination_gps));
} else {
decl_reference = math::radians(_params.mag_declination_deg);
}
} else {
// always use the parameter value
decl_reference = math::radians(_params.mag_declination_deg);
}
// do not allow the horizontal field length to collapse - this will make the declination fusion badly conditioned
// and can result in a reversal of the NE field states which the filter cannot recover from
// apply a circular limit
float h_field = sqrtf(_state.mag_I(0)*_state.mag_I(0) + _state.mag_I(1)*_state.mag_I(1));
if (h_field < h_field_min) {
if (h_field > 0.001f * h_field_min) {
const float h_scaler = h_field_min / h_field;
_state.mag_I(0) *= h_scaler;
_state.mag_I(1) *= h_scaler;
} else {
// too small to scale radially so set to expected value
const float mag_declination = getMagDeclination();
_state.mag_I(0) = 2.0f * h_field_min * cosf(mag_declination);
_state.mag_I(1) = 2.0f * h_field_min * sinf(mag_declination);
}
h_field = h_field_min;
}
// do not allow the declination estimate to vary too much relative to the reference value
constexpr float decl_tolerance = 0.5f;
const float decl_max = decl_reference + decl_tolerance;
const float decl_min = decl_reference - decl_tolerance;
const float decl_estimate = atan2f(_state.mag_I(1) , _state.mag_I(0));
if (decl_estimate > decl_max) {
_state.mag_I(0) = h_field * cosf(decl_max);
_state.mag_I(1) = h_field * sinf(decl_max);
} else if (decl_estimate < decl_min) {
_state.mag_I(0) = h_field * cosf(decl_min);
_state.mag_I(1) = h_field * sinf(decl_min);
}
}
float Ekf::calculate_synthetic_mag_z_measurement(const Vector3f& mag_meas, const Vector3f& mag_earth_predicted)
{
// theoretical magnitude of the magnetometer Z component value given X and Y sensor measurement and our knowledge
// of the earth magnetic field vector at the current location
const float mag_z_abs = sqrtf(math::max(sq(mag_earth_predicted.length()) - sq(mag_meas(0)) - sq(mag_meas(1)), 0.0f));
// calculate sign of synthetic magnetomter Z component based on the sign of the predicted magnetomer Z component
const float mag_z_body_pred = mag_earth_predicted.dot(_R_to_earth.col(2));
return (mag_z_body_pred < 0) ? -mag_z_abs : mag_z_abs;
}