drag_fusion.cpp
15.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file drag_fusion.cpp
* Body frame drag fusion methods used for multi-rotor wind estimation.
* equations generated using EKF/python/ekf_derivation/main.py
*
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseDrag()
{
SparseVector24f<0,1,2,3,4,5,6,22,23> Hfusion; // Observation Jacobians
Vector24f Kfusion; // Kalman gain vector
const float R_ACC = fmaxf(_params.drag_noise, 0.5f); // observation noise variance in specific force drag (m/sec**2)**2
const float rho = fmaxf(_air_density, 0.1f); // air density (kg/m**3)
// calculate inverse of ballistic coefficient
if (_params.bcoef_x < 1.0f || _params.bcoef_y < 1.0f) {
return;
}
const Vector2f ballistic_coef_inv_xy(1.f / _params.bcoef_x, 1.f / _params.bcoef_y);
// get latest estimated orientation
const float &q0 = _state.quat_nominal(0);
const float &q1 = _state.quat_nominal(1);
const float &q2 = _state.quat_nominal(2);
const float &q3 = _state.quat_nominal(3);
// get latest velocity in earth frame
const float &vn = _state.vel(0);
const float &ve = _state.vel(1);
const float &vd = _state.vel(2);
// get latest wind velocity in earth frame
const float &vwn = _state.wind_vel(0);
const float &vwe = _state.wind_vel(1);
// predicted specific forces
// calculate relative wind velocity in earth frame and rotate into body frame
const Vector3f rel_wind_earth(vn - vwn, ve - vwe, vd);
const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal);
const Vector3f rel_wind_body = earth_to_body * rel_wind_earth;
// perform sequential fusion of XY specific forces
for (uint8_t axis_index = 0; axis_index < 2; axis_index++) {
// Estimate the airspeed from the measured drag force and ballistic coefficient
const float mea_acc = _drag_sample_delayed.accelXY(axis_index) - _state.delta_vel_bias(axis_index) / _dt_ekf_avg;
const float airSpd = sqrtf((2.0f * fabsf(mea_acc)) / (ballistic_coef_inv_xy(axis_index) * rho));
// Estimate the derivative of specific force wrt airspeed along the X axis
// Limit lower value to prevent arithmetic exceptions
const float Kacc = fmaxf(1e-1f, rho * ballistic_coef_inv_xy(axis_index) * airSpd);
if (axis_index == 0) {
// intermediate variables
const float HK0 = vn - vwn;
const float HK1 = ve - vwe;
const float HK2 = HK0*q0 + HK1*q3 - q2*vd;
const float HK3 = 2*Kacc;
const float HK4 = HK0*q1 + HK1*q2 + q3*vd;
const float HK5 = HK0*q2 - HK1*q1 + q0*vd;
const float HK6 = -HK0*q3 + HK1*q0 + q1*vd;
const float HK7 = ecl::powf(q0, 2) + ecl::powf(q1, 2) - ecl::powf(q2, 2) - ecl::powf(q3, 2);
const float HK8 = HK7*Kacc;
const float HK9 = q0*q3 + q1*q2;
const float HK10 = HK3*HK9;
const float HK11 = q0*q2 - q1*q3;
const float HK12 = 2*HK9;
const float HK13 = 2*HK11;
const float HK14 = 2*HK4;
const float HK15 = 2*HK2;
const float HK16 = 2*HK5;
const float HK17 = 2*HK6;
const float HK18 = -HK12*P(0,23) + HK12*P(0,5) - HK13*P(0,6) + HK14*P(0,1) + HK15*P(0,0) - HK16*P(0,2) + HK17*P(0,3) - HK7*P(0,22) + HK7*P(0,4);
const float HK19 = HK12*P(5,23);
const float HK20 = -HK12*P(23,23) - HK13*P(6,23) + HK14*P(1,23) + HK15*P(0,23) - HK16*P(2,23) + HK17*P(3,23) + HK19 - HK7*P(22,23) + HK7*P(4,23);
const float HK21 = ecl::powf(Kacc, 2);
const float HK22 = HK12*HK21;
const float HK23 = HK12*P(5,5) - HK13*P(5,6) + HK14*P(1,5) + HK15*P(0,5) - HK16*P(2,5) + HK17*P(3,5) - HK19 + HK7*P(4,5) - HK7*P(5,22);
const float HK24 = HK12*P(5,6) - HK12*P(6,23) - HK13*P(6,6) + HK14*P(1,6) + HK15*P(0,6) - HK16*P(2,6) + HK17*P(3,6) + HK7*P(4,6) - HK7*P(6,22);
const float HK25 = HK7*P(4,22);
const float HK26 = -HK12*P(4,23) + HK12*P(4,5) - HK13*P(4,6) + HK14*P(1,4) + HK15*P(0,4) - HK16*P(2,4) + HK17*P(3,4) - HK25 + HK7*P(4,4);
const float HK27 = HK21*HK7;
const float HK28 = -HK12*P(22,23) + HK12*P(5,22) - HK13*P(6,22) + HK14*P(1,22) + HK15*P(0,22) - HK16*P(2,22) + HK17*P(3,22) + HK25 - HK7*P(22,22);
const float HK29 = -HK12*P(1,23) + HK12*P(1,5) - HK13*P(1,6) + HK14*P(1,1) + HK15*P(0,1) - HK16*P(1,2) + HK17*P(1,3) - HK7*P(1,22) + HK7*P(1,4);
const float HK30 = -HK12*P(2,23) + HK12*P(2,5) - HK13*P(2,6) + HK14*P(1,2) + HK15*P(0,2) - HK16*P(2,2) + HK17*P(2,3) - HK7*P(2,22) + HK7*P(2,4);
const float HK31 = -HK12*P(3,23) + HK12*P(3,5) - HK13*P(3,6) + HK14*P(1,3) + HK15*P(0,3) - HK16*P(2,3) + HK17*P(3,3) - HK7*P(3,22) + HK7*P(3,4);
//const float HK32 = Kacc/(-HK13*HK21*HK24 + HK14*HK21*HK29 + HK15*HK18*HK21 - HK16*HK21*HK30 + HK17*HK21*HK31 - HK20*HK22 + HK22*HK23 + HK26*HK27 - HK27*HK28 + R_ACC);
// calculate innovation variance and exit if badly conditioned
_drag_innov_var(0) = (-HK13*HK21*HK24 + HK14*HK21*HK29 + HK15*HK18*HK21 - HK16*HK21*HK30 + HK17*HK21*HK31 - HK20*HK22 + HK22*HK23 + HK26*HK27 - HK27*HK28 + R_ACC);
if (_drag_innov_var(0) < R_ACC) {
return;
}
const float HK32 = Kacc / _drag_innov_var(0);
// Observation Jacobians
Hfusion.at<0>() = -HK2*HK3;
Hfusion.at<1>() = -HK3*HK4;
Hfusion.at<2>() = HK3*HK5;
Hfusion.at<3>() = -HK3*HK6;
Hfusion.at<4>() = -HK8;
Hfusion.at<5>() = -HK10;
Hfusion.at<6>() = HK11*HK3;
Hfusion.at<22>() = HK8;
Hfusion.at<23>() = HK10;
// Kalman gains
// Don't allow modification of any states other than wind velocity at this stage of development - we only need a wind estimate.
// Kfusion(0) = -HK18*HK32;
// Kfusion(1) = -HK29*HK32;
// Kfusion(2) = -HK30*HK32;
// Kfusion(3) = -HK31*HK32;
// Kfusion(4) = -HK26*HK32;
// Kfusion(5) = -HK23*HK32;
// Kfusion(6) = -HK24*HK32;
// Kfusion(7) = -HK32*(HK12*P(5,7) - HK12*P(7,23) - HK13*P(6,7) + HK14*P(1,7) + HK15*P(0,7) - HK16*P(2,7) + HK17*P(3,7) + HK7*P(4,7) - HK7*P(7,22));
// Kfusion(8) = -HK32*(HK12*P(5,8) - HK12*P(8,23) - HK13*P(6,8) + HK14*P(1,8) + HK15*P(0,8) - HK16*P(2,8) + HK17*P(3,8) + HK7*P(4,8) - HK7*P(8,22));
// Kfusion(9) = -HK32*(HK12*P(5,9) - HK12*P(9,23) - HK13*P(6,9) + HK14*P(1,9) + HK15*P(0,9) - HK16*P(2,9) + HK17*P(3,9) + HK7*P(4,9) - HK7*P(9,22));
// Kfusion(10) = -HK32*(-HK12*P(10,23) + HK12*P(5,10) - HK13*P(6,10) + HK14*P(1,10) + HK15*P(0,10) - HK16*P(2,10) + HK17*P(3,10) - HK7*P(10,22) + HK7*P(4,10));
// Kfusion(11) = -HK32*(-HK12*P(11,23) + HK12*P(5,11) - HK13*P(6,11) + HK14*P(1,11) + HK15*P(0,11) - HK16*P(2,11) + HK17*P(3,11) - HK7*P(11,22) + HK7*P(4,11));
// Kfusion(12) = -HK32*(-HK12*P(12,23) + HK12*P(5,12) - HK13*P(6,12) + HK14*P(1,12) + HK15*P(0,12) - HK16*P(2,12) + HK17*P(3,12) - HK7*P(12,22) + HK7*P(4,12));
// Kfusion(13) = -HK32*(-HK12*P(13,23) + HK12*P(5,13) - HK13*P(6,13) + HK14*P(1,13) + HK15*P(0,13) - HK16*P(2,13) + HK17*P(3,13) - HK7*P(13,22) + HK7*P(4,13));
// Kfusion(14) = -HK32*(-HK12*P(14,23) + HK12*P(5,14) - HK13*P(6,14) + HK14*P(1,14) + HK15*P(0,14) - HK16*P(2,14) + HK17*P(3,14) - HK7*P(14,22) + HK7*P(4,14));
// Kfusion(15) = -HK32*(-HK12*P(15,23) + HK12*P(5,15) - HK13*P(6,15) + HK14*P(1,15) + HK15*P(0,15) - HK16*P(2,15) + HK17*P(3,15) - HK7*P(15,22) + HK7*P(4,15));
// Kfusion(16) = -HK32*(-HK12*P(16,23) + HK12*P(5,16) - HK13*P(6,16) + HK14*P(1,16) + HK15*P(0,16) - HK16*P(2,16) + HK17*P(3,16) - HK7*P(16,22) + HK7*P(4,16));
// Kfusion(17) = -HK32*(-HK12*P(17,23) + HK12*P(5,17) - HK13*P(6,17) + HK14*P(1,17) + HK15*P(0,17) - HK16*P(2,17) + HK17*P(3,17) - HK7*P(17,22) + HK7*P(4,17));
// Kfusion(18) = -HK32*(-HK12*P(18,23) + HK12*P(5,18) - HK13*P(6,18) + HK14*P(1,18) + HK15*P(0,18) - HK16*P(2,18) + HK17*P(3,18) - HK7*P(18,22) + HK7*P(4,18));
// Kfusion(19) = -HK32*(-HK12*P(19,23) + HK12*P(5,19) - HK13*P(6,19) + HK14*P(1,19) + HK15*P(0,19) - HK16*P(2,19) + HK17*P(3,19) - HK7*P(19,22) + HK7*P(4,19));
// Kfusion(20) = -HK32*(-HK12*P(20,23) + HK12*P(5,20) - HK13*P(6,20) + HK14*P(1,20) + HK15*P(0,20) - HK16*P(2,20) + HK17*P(3,20) - HK7*P(20,22) + HK7*P(4,20));
// Kfusion(21) = -HK32*(-HK12*P(21,23) + HK12*P(5,21) - HK13*P(6,21) + HK14*P(1,21) + HK15*P(0,21) - HK16*P(2,21) + HK17*P(3,21) - HK7*P(21,22) + HK7*P(4,21));
Kfusion(22) = -HK28*HK32;
Kfusion(23) = -HK20*HK32;
} else if (axis_index == 1) {
// intermediate variables
const float HK0 = ve - vwe;
const float HK1 = vn - vwn;
const float HK2 = HK0*q0 - HK1*q3 + q1*vd;
const float HK3 = 2*Kacc;
const float HK4 = -HK0*q1 + HK1*q2 + q0*vd;
const float HK5 = HK0*q2 + HK1*q1 + q3*vd;
const float HK6 = HK0*q3 + HK1*q0 - q2*vd;
const float HK7 = q0*q3 - q1*q2;
const float HK8 = HK3*HK7;
const float HK9 = ecl::powf(q0, 2) - ecl::powf(q1, 2) + ecl::powf(q2, 2) - ecl::powf(q3, 2);
const float HK10 = HK9*Kacc;
const float HK11 = q0*q1 + q2*q3;
const float HK12 = 2*HK11;
const float HK13 = 2*HK7;
const float HK14 = 2*HK5;
const float HK15 = 2*HK2;
const float HK16 = 2*HK4;
const float HK17 = 2*HK6;
const float HK18 = HK12*P(0,6) + HK13*P(0,22) - HK13*P(0,4) + HK14*P(0,2) + HK15*P(0,0) + HK16*P(0,1) - HK17*P(0,3) - HK9*P(0,23) + HK9*P(0,5);
const float HK19 = ecl::powf(Kacc, 2);
const float HK20 = HK12*P(6,6) - HK13*P(4,6) + HK13*P(6,22) + HK14*P(2,6) + HK15*P(0,6) + HK16*P(1,6) - HK17*P(3,6) + HK9*P(5,6) - HK9*P(6,23);
const float HK21 = HK13*P(4,22);
const float HK22 = HK12*P(6,22) + HK13*P(22,22) + HK14*P(2,22) + HK15*P(0,22) + HK16*P(1,22) - HK17*P(3,22) - HK21 - HK9*P(22,23) + HK9*P(5,22);
const float HK23 = HK13*HK19;
const float HK24 = HK12*P(4,6) - HK13*P(4,4) + HK14*P(2,4) + HK15*P(0,4) + HK16*P(1,4) - HK17*P(3,4) + HK21 - HK9*P(4,23) + HK9*P(4,5);
const float HK25 = HK9*P(5,23);
const float HK26 = HK12*P(5,6) - HK13*P(4,5) + HK13*P(5,22) + HK14*P(2,5) + HK15*P(0,5) + HK16*P(1,5) - HK17*P(3,5) - HK25 + HK9*P(5,5);
const float HK27 = HK19*HK9;
const float HK28 = HK12*P(6,23) + HK13*P(22,23) - HK13*P(4,23) + HK14*P(2,23) + HK15*P(0,23) + HK16*P(1,23) - HK17*P(3,23) + HK25 - HK9*P(23,23);
const float HK29 = HK12*P(2,6) + HK13*P(2,22) - HK13*P(2,4) + HK14*P(2,2) + HK15*P(0,2) + HK16*P(1,2) - HK17*P(2,3) - HK9*P(2,23) + HK9*P(2,5);
const float HK30 = HK12*P(1,6) + HK13*P(1,22) - HK13*P(1,4) + HK14*P(1,2) + HK15*P(0,1) + HK16*P(1,1) - HK17*P(1,3) - HK9*P(1,23) + HK9*P(1,5);
const float HK31 = HK12*P(3,6) + HK13*P(3,22) - HK13*P(3,4) + HK14*P(2,3) + HK15*P(0,3) + HK16*P(1,3) - HK17*P(3,3) - HK9*P(3,23) + HK9*P(3,5);
// const float HK32 = Kacc/(HK12*HK19*HK20 + HK14*HK19*HK29 + HK15*HK18*HK19 + HK16*HK19*HK30 - HK17*HK19*HK31 + HK22*HK23 - HK23*HK24 + HK26*HK27 - HK27*HK28 + R_ACC);
_drag_innov_var(1) = (HK12*HK19*HK20 + HK14*HK19*HK29 + HK15*HK18*HK19 + HK16*HK19*HK30 - HK17*HK19*HK31 + HK22*HK23 - HK23*HK24 + HK26*HK27 - HK27*HK28 + R_ACC);
if (_drag_innov_var(1) < R_ACC) {
// calculation is badly conditioned
return;
}
const float HK32 = Kacc / _drag_innov_var(1);
// Observation Jacobians
Hfusion.at<0>() = -HK2*HK3;
Hfusion.at<1>() = -HK3*HK4;
Hfusion.at<2>() = -HK3*HK5;
Hfusion.at<3>() = HK3*HK6;
Hfusion.at<4>() = HK8;
Hfusion.at<5>() = -HK10;
Hfusion.at<6>() = -HK11*HK3;
Hfusion.at<22>() = -HK8;
Hfusion.at<23>() = HK10;
// Kalman gains
// Don't allow modification of any states other than wind velocity at this stage of development - we only need a wind estimate.
// Kfusion(0) = -HK18*HK32;
// Kfusion(1) = -HK30*HK32;
// Kfusion(2) = -HK29*HK32;
// Kfusion(3) = -HK31*HK32;
// Kfusion(4) = -HK24*HK32;
// Kfusion(5) = -HK26*HK32;
// Kfusion(6) = -HK20*HK32;
// Kfusion(7) = -HK32*(HK12*P(6,7) - HK13*P(4,7) + HK13*P(7,22) + HK14*P(2,7) + HK15*P(0,7) + HK16*P(1,7) - HK17*P(3,7) + HK9*P(5,7) - HK9*P(7,23));
// Kfusion(8) = -HK32*(HK12*P(6,8) - HK13*P(4,8) + HK13*P(8,22) + HK14*P(2,8) + HK15*P(0,8) + HK16*P(1,8) - HK17*P(3,8) + HK9*P(5,8) - HK9*P(8,23));
// Kfusion(9) = -HK32*(HK12*P(6,9) - HK13*P(4,9) + HK13*P(9,22) + HK14*P(2,9) + HK15*P(0,9) + HK16*P(1,9) - HK17*P(3,9) + HK9*P(5,9) - HK9*P(9,23));
// Kfusion(10) = -HK32*(HK12*P(6,10) + HK13*P(10,22) - HK13*P(4,10) + HK14*P(2,10) + HK15*P(0,10) + HK16*P(1,10) - HK17*P(3,10) - HK9*P(10,23) + HK9*P(5,10));
// Kfusion(11) = -HK32*(HK12*P(6,11) + HK13*P(11,22) - HK13*P(4,11) + HK14*P(2,11) + HK15*P(0,11) + HK16*P(1,11) - HK17*P(3,11) - HK9*P(11,23) + HK9*P(5,11));
// Kfusion(12) = -HK32*(HK12*P(6,12) + HK13*P(12,22) - HK13*P(4,12) + HK14*P(2,12) + HK15*P(0,12) + HK16*P(1,12) - HK17*P(3,12) - HK9*P(12,23) + HK9*P(5,12));
// Kfusion(13) = -HK32*(HK12*P(6,13) + HK13*P(13,22) - HK13*P(4,13) + HK14*P(2,13) + HK15*P(0,13) + HK16*P(1,13) - HK17*P(3,13) - HK9*P(13,23) + HK9*P(5,13));
// Kfusion(14) = -HK32*(HK12*P(6,14) + HK13*P(14,22) - HK13*P(4,14) + HK14*P(2,14) + HK15*P(0,14) + HK16*P(1,14) - HK17*P(3,14) - HK9*P(14,23) + HK9*P(5,14));
// Kfusion(15) = -HK32*(HK12*P(6,15) + HK13*P(15,22) - HK13*P(4,15) + HK14*P(2,15) + HK15*P(0,15) + HK16*P(1,15) - HK17*P(3,15) - HK9*P(15,23) + HK9*P(5,15));
// Kfusion(16) = -HK32*(HK12*P(6,16) + HK13*P(16,22) - HK13*P(4,16) + HK14*P(2,16) + HK15*P(0,16) + HK16*P(1,16) - HK17*P(3,16) - HK9*P(16,23) + HK9*P(5,16));
// Kfusion(17) = -HK32*(HK12*P(6,17) + HK13*P(17,22) - HK13*P(4,17) + HK14*P(2,17) + HK15*P(0,17) + HK16*P(1,17) - HK17*P(3,17) - HK9*P(17,23) + HK9*P(5,17));
// Kfusion(18) = -HK32*(HK12*P(6,18) + HK13*P(18,22) - HK13*P(4,18) + HK14*P(2,18) + HK15*P(0,18) + HK16*P(1,18) - HK17*P(3,18) - HK9*P(18,23) + HK9*P(5,18));
// Kfusion(19) = -HK32*(HK12*P(6,19) + HK13*P(19,22) - HK13*P(4,19) + HK14*P(2,19) + HK15*P(0,19) + HK16*P(1,19) - HK17*P(3,19) - HK9*P(19,23) + HK9*P(5,19));
// Kfusion(20) = -HK32*(HK12*P(6,20) + HK13*P(20,22) - HK13*P(4,20) + HK14*P(2,20) + HK15*P(0,20) + HK16*P(1,20) - HK17*P(3,20) - HK9*P(20,23) + HK9*P(5,20));
// Kfusion(21) = -HK32*(HK12*P(6,21) + HK13*P(21,22) - HK13*P(4,21) + HK14*P(2,21) + HK15*P(0,21) + HK16*P(1,21) - HK17*P(3,21) - HK9*P(21,23) + HK9*P(5,21));
Kfusion(22) = -HK22*HK32;
Kfusion(23) = -HK28*HK32;
}
// calculate the predicted acceleration and innovation measured along body axis
const float drag_sign = (rel_wind_body(axis_index) >= 0.f) ? 1.f : -1.f;
const float predAccel = -0.5f * ballistic_coef_inv_xy(axis_index) * rho * sq(rel_wind_body(axis_index)) * drag_sign;
_drag_innov(axis_index) = predAccel - mea_acc;
_drag_test_ratio(axis_index) = sq(_drag_innov(axis_index)) / (25.0f * _drag_innov_var(axis_index));
// if the innovation consistency check fails then don't fuse the sample
if (_drag_test_ratio(axis_index) <= 1.0f) {
measurementUpdate(Kfusion, Hfusion, _drag_innov(axis_index));
}
}
}