EKFGSF_yaw.cpp
21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#include "EKFGSF_yaw.h"
#include <cstdlib>
EKFGSF_yaw::EKFGSF_yaw()
{
// this flag must be false when we start
_ahrs_ekf_gsf_tilt_aligned = false;
// these objects are initialised in initialise() before being used internally, but can be reported for logging before then
memset(&_ahrs_ekf_gsf, 0, sizeof(_ahrs_ekf_gsf));
memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
_gsf_yaw = 0.0f;
_ahrs_accel.zero();
}
void EKFGSF_yaw::update(const imuSample& imu_sample,
bool run_EKF, // set to true when flying or movement is suitable for yaw estimation
float airspeed, // true airspeed used for centripetal accel compensation - set to 0 when not required.
const Vector3f &imu_gyro_bias) // estimated rate gyro bias (rad/sec)
{
// copy to class variables
_delta_ang = imu_sample.delta_ang;
_delta_vel = imu_sample.delta_vel;
_delta_ang_dt = imu_sample.delta_ang_dt;
_delta_vel_dt = imu_sample.delta_vel_dt;
_run_ekf_gsf = run_EKF;
_true_airspeed = airspeed;
// to reduce effect of vibration, filter using an LPF whose time constant is 1/10 of the AHRS tilt correction time constant
const float filter_coef = fminf(10.0f * _delta_vel_dt * _tilt_gain, 1.0f);
const Vector3f accel = _delta_vel / fmaxf(_delta_vel_dt, 0.001f);
_ahrs_accel = _ahrs_accel * (1.0f - filter_coef) + accel * filter_coef;
// Initialise states first time
if (!_ahrs_ekf_gsf_tilt_aligned) {
// check for excessive acceleration to reduce likelihood of large initial roll/pitch errors
// due to vehicle movement
const float accel_norm_sq = accel.norm_squared();
const float upper_accel_limit = CONSTANTS_ONE_G * 1.1f;
const float lower_accel_limit = CONSTANTS_ONE_G * 0.9f;
const bool ok_to_align = (accel_norm_sq > sq(lower_accel_limit)) && (accel_norm_sq < sq(upper_accel_limit));
if (ok_to_align) {
initialiseEKFGSF();
ahrsAlignTilt();
_ahrs_ekf_gsf_tilt_aligned = true;
}
return;
}
// calculate common values used by the AHRS complementary filter models
_ahrs_accel_norm = _ahrs_accel.norm();
// AHRS prediction cycle for each model - this always runs
_ahrs_accel_fusion_gain = ahrsCalcAccelGain();
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
predictEKF(model_index);
}
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
if (_run_ekf_gsf && _vel_data_updated) {
if (!_ekf_gsf_vel_fuse_started) {
initialiseEKFGSF();
ahrsAlignYaw();
// Initialise to gyro bias estimate from main filter because there could be a large
// uncorrected rate gyro bias error about the gravity vector
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
_ahrs_ekf_gsf[model_index].gyro_bias = imu_gyro_bias;
}
_ekf_gsf_vel_fuse_started = true;
} else {
bool bad_update = false;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
// subsequent measurements are fused as direct state observations
if (!updateEKF(model_index)) {
bad_update = true;
}
}
if (!bad_update) {
float total_weight = 0.0f;
// calculate weighting for each model assuming a normal distribution
const float min_weight = 1e-5f;
uint8_t n_weight_clips = 0;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
_model_weights(model_index) = gaussianDensity(model_index) * _model_weights(model_index);
if (_model_weights(model_index) < min_weight) {
n_weight_clips++;
_model_weights(model_index) = min_weight;
}
total_weight += _model_weights(model_index);
}
// normalise the weighting function
if (n_weight_clips < N_MODELS_EKFGSF) {
_model_weights /= total_weight;
} else {
// all weights have collapsed due to excessive innovation variances so reset filters
initialiseEKFGSF();
}
}
}
} else if (_ekf_gsf_vel_fuse_started && !_run_ekf_gsf) {
// wait to fly again
_ekf_gsf_vel_fuse_started = false;
}
// Calculate a composite yaw vector as a weighted average of the states for each model.
// To avoid issues with angle wrapping, the yaw state is converted to a vector with length
// equal to the weighting value before it is summed.
Vector2f yaw_vector;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
yaw_vector(0) += _model_weights(model_index) * cosf(_ekf_gsf[model_index].X(2));
yaw_vector(1) += _model_weights(model_index) * sinf(_ekf_gsf[model_index].X(2));
}
_gsf_yaw = atan2f(yaw_vector(1),yaw_vector(0));
// calculate a composite variance for the yaw state from a weighted average of the variance for each model
// models with larger innovations are weighted less
_gsf_yaw_variance = 0.0f;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
const float yaw_delta = wrap_pi(_ekf_gsf[model_index].X(2) - _gsf_yaw);
_gsf_yaw_variance += _model_weights(model_index) * (_ekf_gsf[model_index].P(2,2) + yaw_delta * yaw_delta);
}
// prevent the same velocity data being used more than once
_vel_data_updated = false;
}
void EKFGSF_yaw::ahrsPredict(const uint8_t model_index)
{
// generate attitude solution using simple complementary filter for the selected model
const Vector3f ang_rate = _delta_ang / fmaxf(_delta_ang_dt, 0.001f) - _ahrs_ekf_gsf[model_index].gyro_bias;
const Dcmf R_to_body = _ahrs_ekf_gsf[model_index].R.transpose();
const Vector3f gravity_direction_bf = R_to_body.col(2);
// Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved).
// During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward
Vector3f tilt_correction;
if (_ahrs_accel_fusion_gain > 0.0f) {
Vector3f accel = _ahrs_accel;
if (_true_airspeed > FLT_EPSILON) {
// Calculate body frame centripetal acceleration with assumption X axis is aligned with the airspeed vector
// Use cross product of body rate and body frame airspeed vector
const Vector3f centripetal_accel_bf = Vector3f(0.0f, _true_airspeed * ang_rate(2), - _true_airspeed * ang_rate(1));
// correct measured accel for centripetal acceleration
accel -= centripetal_accel_bf;
}
tilt_correction = (gravity_direction_bf % accel) * _ahrs_accel_fusion_gain / _ahrs_accel_norm;
}
// Gyro bias estimation
constexpr float gyro_bias_limit = 0.05f;
const float spinRate = ang_rate.length();
if (spinRate < 0.175f) {
_ahrs_ekf_gsf[model_index].gyro_bias -= tilt_correction * (_gyro_bias_gain * _delta_ang_dt);
_ahrs_ekf_gsf[model_index].gyro_bias = matrix::constrain(_ahrs_ekf_gsf[model_index].gyro_bias, -gyro_bias_limit, gyro_bias_limit);
}
// delta angle from previous to current frame
const Vector3f delta_angle_corrected = _delta_ang + (tilt_correction - _ahrs_ekf_gsf[model_index].gyro_bias) * _delta_ang_dt;
// Apply delta angle to rotation matrix
_ahrs_ekf_gsf[model_index].R = ahrsPredictRotMat(_ahrs_ekf_gsf[model_index].R, delta_angle_corrected);
}
void EKFGSF_yaw::ahrsAlignTilt()
{
// Rotation matrix is constructed directly from acceleration measurement and will be the same for
// all models so only need to calculate it once. Assumptions are:
// 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences.
// 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity.
// Calculate earth frame Down axis unit vector rotated into body frame
const Vector3f down_in_bf = -_delta_vel.normalized();
// Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf'
const Vector3f i_vec_bf(1.0f,0.0f,0.0f);
Vector3f north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf.dot(down_in_bf));
north_in_bf.normalize();
// Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf'
const Vector3f east_in_bf = down_in_bf % north_in_bf;
// Each column in a rotation matrix from earth frame to body frame represents the projection of the
// corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column.
// We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body
// frame are copied into corresponding rows instead.
Dcmf R;
R.setRow(0, north_in_bf);
R.setRow(1, east_in_bf);
R.setRow(2, down_in_bf);
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
_ahrs_ekf_gsf[model_index].R = R;
}
}
void EKFGSF_yaw::ahrsAlignYaw()
{
// Align yaw angle for each model
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
Dcmf& R = _ahrs_ekf_gsf[model_index].R;
const float yaw = wrap_pi(_ekf_gsf[model_index].X(2));
R = updateYawInRotMat(yaw, R);
_ahrs_ekf_gsf[model_index].aligned = true;
}
}
void EKFGSF_yaw::predictEKF(const uint8_t model_index)
{
// generate an attitude reference using IMU data
ahrsPredict(model_index);
// we don't start running the EKF part of the algorithm until there are regular velocity observations
if (!_ekf_gsf_vel_fuse_started) {
return;
}
// Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock
const Dcmf& R = _ahrs_ekf_gsf[model_index].R;
_ekf_gsf[model_index].X(2) = shouldUse321RotationSequence(R) ?
getEuler321Yaw(R) :
getEuler312Yaw(R);
// calculate delta velocity in a horizontal front-right frame
const Vector3f del_vel_NED = _ahrs_ekf_gsf[model_index].R * _delta_vel;
const float cos_yaw = cosf(_ekf_gsf[model_index].X(2));
const float sin_yaw = sinf(_ekf_gsf[model_index].X(2));
const float dvx = del_vel_NED(0) * cos_yaw + del_vel_NED(1) * sin_yaw;
const float dvy = - del_vel_NED(0) * sin_yaw + del_vel_NED(1) * cos_yaw;
// sum delta velocities in earth frame:
_ekf_gsf[model_index].X(0) += del_vel_NED(0);
_ekf_gsf[model_index].X(1) += del_vel_NED(1);
// predict covariance - equations generated using EKF/python/gsf_ekf_yaw_estimator/main.py
// Local short variable name copies required for readability
const float &P00 = _ekf_gsf[model_index].P(0,0);
const float &P01 = _ekf_gsf[model_index].P(0,1);
const float &P02 = _ekf_gsf[model_index].P(0,2);
const float &P11 = _ekf_gsf[model_index].P(1,1);
const float &P12 = _ekf_gsf[model_index].P(1,2);
const float &P22 = _ekf_gsf[model_index].P(2,2);
const float &psi = _ekf_gsf[model_index].X(2);
// Use fixed values for delta velocity and delta angle process noise variances
const float dvxVar = sq(_accel_noise * _delta_vel_dt); // variance of forward delta velocity - (m/s)^2
const float dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2
const float dazVar = sq(_gyro_noise * _delta_ang_dt); // variance of yaw delta angle - rad^2
// optimized auto generated code from SymPy script src/lib/ecl/EKF/python/ekf_derivation/main.py
const float S0 = cosf(psi);
const float S1 = ecl::powf(S0, 2);
const float S2 = sinf(psi);
const float S3 = ecl::powf(S2, 2);
const float S4 = S0*dvy + S2*dvx;
const float S5 = P02 - P22*S4;
const float S6 = S0*dvx - S2*dvy;
const float S7 = S0*S2;
const float S8 = P01 + S7*dvxVar - S7*dvyVar;
const float S9 = P12 + P22*S6;
_ekf_gsf[model_index].P(0,0) = P00 - P02*S4 + S1*dvxVar + S3*dvyVar - S4*S5;
_ekf_gsf[model_index].P(0,1) = -P12*S4 + S5*S6 + S8;
_ekf_gsf[model_index].P(1,1) = P11 + P12*S6 + S1*dvyVar + S3*dvxVar + S6*S9;
_ekf_gsf[model_index].P(0,2) = S5;
_ekf_gsf[model_index].P(1,2) = S9;
_ekf_gsf[model_index].P(2,2) = P22 + dazVar;
// covariance matrix is symmetrical, so copy upper half to lower half
_ekf_gsf[model_index].P(1,0) = _ekf_gsf[model_index].P(0,1);
_ekf_gsf[model_index].P(2,0) = _ekf_gsf[model_index].P(0,2);
_ekf_gsf[model_index].P(2,1) = _ekf_gsf[model_index].P(1,2);
// constrain variances
const float min_var = 1e-6f;
for (unsigned index = 0; index < 3; index++) {
_ekf_gsf[model_index].P(index,index) = fmaxf(_ekf_gsf[model_index].P(index,index),min_var);
}
}
// Update EKF states and covariance for specified model index using velocity measurement
bool EKFGSF_yaw::updateEKF(const uint8_t model_index)
{
// set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum
const float velObsVar = sq(fmaxf(_vel_accuracy, 0.01f));
// calculate velocity observation innovations
_ekf_gsf[model_index].innov(0) = _ekf_gsf[model_index].X(0) - _vel_NE(0);
_ekf_gsf[model_index].innov(1) = _ekf_gsf[model_index].X(1) - _vel_NE(1);
// Use temporary variables for covariance elements to reduce verbosity of auto-code expressions
const float &P00 = _ekf_gsf[model_index].P(0,0);
const float &P01 = _ekf_gsf[model_index].P(0,1);
const float &P02 = _ekf_gsf[model_index].P(0,2);
const float &P11 = _ekf_gsf[model_index].P(1,1);
const float &P12 = _ekf_gsf[model_index].P(1,2);
const float &P22 = _ekf_gsf[model_index].P(2,2);
// optimized auto generated code from SymPy script src/lib/ecl/EKF/python/ekf_derivation/main.py
const float t0 = ecl::powf(P01, 2);
const float t1 = -t0;
const float t2 = P00*P11 + P00*velObsVar + P11*velObsVar + t1 + ecl::powf(velObsVar, 2);
if (fabsf(t2) < 1e-6f) {
return false;
}
const float t3 = 1.0F/t2;
const float t4 = P11 + velObsVar;
const float t5 = P01*t3;
const float t6 = -t5;
const float t7 = P00 + velObsVar;
const float t8 = P00*t4 + t1;
const float t9 = t5*velObsVar;
const float t10 = P11*t7;
const float t11 = t1 + t10;
const float t12 = P01*P12;
const float t13 = P02*t4;
const float t14 = P01*P02;
const float t15 = P12*t7;
const float t16 = t0*velObsVar;
const float t17 = ecl::powf(t2, -2);
const float t18 = t4*velObsVar + t8;
const float t19 = t17*t18;
const float t20 = t17*(t16 + t7*t8);
const float t21 = t0 - t10;
const float t22 = t17*t21;
const float t23 = t14 - t15;
const float t24 = P01*t23;
const float t25 = t12 - t13;
const float t26 = t16 - t21*t4;
const float t27 = t17*t26;
const float t28 = t11 + t7*velObsVar;
const float t30 = t17*t28;
const float t31 = P01*t25;
const float t32 = t23*t4 + t31;
const float t33 = t17*t32;
const float t35 = t24 + t25*t7;
const float t36 = t17*t35;
_ekf_gsf[model_index].S_det_inverse = t3;
_ekf_gsf[model_index].S_inverse(0,0) = t3*t4;
_ekf_gsf[model_index].S_inverse(0,1) = t6;
_ekf_gsf[model_index].S_inverse(1,1) = t3*t7;
_ekf_gsf[model_index].S_inverse(1,0) = _ekf_gsf[model_index].S_inverse(0,1);
matrix::Matrix<float, 3, 2> K;
K(0,0) = t3*t8;
K(1,0) = t9;
K(2,0) = t3*(-t12 + t13);
K(0,1) = t9;
K(1,1) = t11*t3;
K(2,1) = t3*(-t14 + t15);
_ekf_gsf[model_index].P(0,0) = P00 - t16*t19 - t20*t8;
_ekf_gsf[model_index].P(0,1) = P01*(t18*t22 - t20*velObsVar + 1);
_ekf_gsf[model_index].P(1,1) = P11 - t16*t30 + t22*t26;
_ekf_gsf[model_index].P(0,2) = P02 + t19*t24 + t20*t25;
_ekf_gsf[model_index].P(1,2) = P12 + t23*t27 + t30*t31;
_ekf_gsf[model_index].P(2,2) = P22 - t23*t33 - t25*t36;
_ekf_gsf[model_index].P(1,0) = _ekf_gsf[model_index].P(0,1);
_ekf_gsf[model_index].P(2,0) = _ekf_gsf[model_index].P(0,2);
_ekf_gsf[model_index].P(2,1) = _ekf_gsf[model_index].P(1,2);
// constrain variances
const float min_var = 1e-6f;
for (unsigned index = 0; index < 3; index++) {
_ekf_gsf[model_index].P(index,index) = fmaxf(_ekf_gsf[model_index].P(index,index),min_var);
}
// test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1]
const float test_ratio = _ekf_gsf[model_index].innov * (_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov);
// Perform a chi-square innovation consistency test and calculate a compression scale factor
// that limits the magnitude of innovations to 5-sigma
// If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma
// This protects from large measurement spikes
const float innov_comp_scale_factor = test_ratio > 25.f ? sqrtf(25.0f / test_ratio) : 1.f;
// Correct the state vector and capture the change in yaw angle
const float oldYaw = _ekf_gsf[model_index].X(2);
_ekf_gsf[model_index].X -= (K * _ekf_gsf[model_index].innov) * innov_comp_scale_factor;
const float yawDelta = _ekf_gsf[model_index].X(2) - oldYaw;
// apply the change in yaw angle to the AHRS
// take advantage of sparseness in the yaw rotation matrix
const float cosYaw = cosf(yawDelta);
const float sinYaw = sinf(yawDelta);
const float R_prev00 = _ahrs_ekf_gsf[model_index].R(0, 0);
const float R_prev01 = _ahrs_ekf_gsf[model_index].R(0, 1);
const float R_prev02 = _ahrs_ekf_gsf[model_index].R(0, 2);
_ahrs_ekf_gsf[model_index].R(0, 0) = R_prev00 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 0) * sinYaw;
_ahrs_ekf_gsf[model_index].R(0, 1) = R_prev01 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 1) * sinYaw;
_ahrs_ekf_gsf[model_index].R(0, 2) = R_prev02 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 2) * sinYaw;
_ahrs_ekf_gsf[model_index].R(1, 0) = R_prev00 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 0) * cosYaw;
_ahrs_ekf_gsf[model_index].R(1, 1) = R_prev01 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 1) * cosYaw;
_ahrs_ekf_gsf[model_index].R(1, 2) = R_prev02 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 2) * cosYaw;
return true;
}
void EKFGSF_yaw::initialiseEKFGSF()
{
_gsf_yaw = 0.0f;
_ekf_gsf_vel_fuse_started = false;
_gsf_yaw_variance = _m_pi2 * _m_pi2;
_model_weights.setAll(1.0f / (float)N_MODELS_EKFGSF); // All filter models start with the same weight
memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
const float yaw_increment = 2.0f * _m_pi / (float)N_MODELS_EKFGSF;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
// evenly space initial yaw estimates in the region between +-Pi
_ekf_gsf[model_index].X(2) = -_m_pi + (0.5f * yaw_increment) + ((float)model_index * yaw_increment);
// take velocity states and corresponding variance from last measurement
_ekf_gsf[model_index].X(0) = _vel_NE(0);
_ekf_gsf[model_index].X(1) = _vel_NE(1);
_ekf_gsf[model_index].P(0,0) = sq(_vel_accuracy);
_ekf_gsf[model_index].P(1,1) = _ekf_gsf[model_index].P(0,0);
// use half yaw interval for yaw uncertainty
_ekf_gsf[model_index].P(2,2) = sq(0.5f * yaw_increment);
}
}
float EKFGSF_yaw::gaussianDensity(const uint8_t model_index) const
{
// calculate transpose(innovation) * inv(S) * innovation
const float normDist = _ekf_gsf[model_index].innov.dot(_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov);
return _m_2pi_inv * sqrtf(_ekf_gsf[model_index].S_det_inverse) * expf(-0.5f * normDist);
}
bool EKFGSF_yaw::getLogData(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]) const
{
if (_ekf_gsf_vel_fuse_started) {
*yaw_composite = _gsf_yaw;
*yaw_variance = _gsf_yaw_variance;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
yaw[model_index] = _ekf_gsf[model_index].X(2);
innov_VN[model_index] = _ekf_gsf[model_index].innov(0);
innov_VE[model_index] = _ekf_gsf[model_index].innov(1);
weight[model_index] = _model_weights(model_index);
}
return true;
}
return false;
}
float EKFGSF_yaw::ahrsCalcAccelGain() const
{
// Calculate the acceleration fusion gain using a continuous function that is unity at 1g and zero
// at the min and max g value. Allow for more acceleration when flying as a fixed wing vehicle using centripetal
// acceleration correction as higher and more sustained g will be experienced.
// Use a quadratic instead of linear function to prevent vibration around 1g reducing the tilt correction effectiveness.
// see https://www.desmos.com/calculator/dbqbxvnwfg
float attenuation = 2.f;
const bool centripetal_accel_compensation_enabled = (_true_airspeed > FLT_EPSILON);
if (centripetal_accel_compensation_enabled
&& _ahrs_accel_norm > CONSTANTS_ONE_G) {
attenuation = 1.f;
}
const float delta_accel_g = (_ahrs_accel_norm - CONSTANTS_ONE_G) / CONSTANTS_ONE_G;
return _tilt_gain * sq(1.f - math::min(attenuation * fabsf(delta_accel_g), 1.f));
}
Matrix3f EKFGSF_yaw::ahrsPredictRotMat(const Matrix3f &R, const Vector3f &g)
{
Matrix3f ret = R;
ret(0,0) += R(0,1) * g(2) - R(0,2) * g(1);
ret(0,1) += R(0,2) * g(0) - R(0,0) * g(2);
ret(0,2) += R(0,0) * g(1) - R(0,1) * g(0);
ret(1,0) += R(1,1) * g(2) - R(1,2) * g(1);
ret(1,1) += R(1,2) * g(0) - R(1,0) * g(2);
ret(1,2) += R(1,0) * g(1) - R(1,1) * g(0);
ret(2,0) += R(2,1) * g(2) - R(2,2) * g(1);
ret(2,1) += R(2,2) * g(0) - R(2,0) * g(2);
ret(2,2) += R(2,0) * g(1) - R(2,1) * g(0);
// Renormalise rows
for (uint8_t r = 0; r < 3; r++) {
const float rowLengthSq = ret.row(r).norm_squared();
if (rowLengthSq > FLT_EPSILON) {
// Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0
const float rowLengthInv = 1.5f - 0.5f * rowLengthSq;
ret.row(r) *= rowLengthInv;
}
}
return ret;
}
bool EKFGSF_yaw::getYawData(float *yaw, float *yaw_variance) const
{
if(_ekf_gsf_vel_fuse_started) {
*yaw = _gsf_yaw;
*yaw_variance = _gsf_yaw_variance;
return true;
}
return false;
}
void EKFGSF_yaw::setVelocity(const Vector2f &velocity, float accuracy)
{
_vel_NE = velocity;
_vel_accuracy = accuracy;
_vel_data_updated = true;
}