EKFGSF_yaw.cpp 21 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
#include "EKFGSF_yaw.h"
#include <cstdlib>

EKFGSF_yaw::EKFGSF_yaw()
{
	// this flag must be false when we start
	_ahrs_ekf_gsf_tilt_aligned = false;

	// these objects are initialised in initialise() before being used internally, but can be reported for logging before then
	memset(&_ahrs_ekf_gsf, 0, sizeof(_ahrs_ekf_gsf));
	memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
	_gsf_yaw = 0.0f;
	_ahrs_accel.zero();
}

void EKFGSF_yaw::update(const imuSample& imu_sample,
			bool run_EKF,			// set to true when flying or movement is suitable for yaw estimation
			float airspeed,			// true airspeed used for centripetal accel compensation - set to 0 when not required.
			const Vector3f &imu_gyro_bias)  // estimated rate gyro bias (rad/sec)
{
	// copy to class variables
	_delta_ang = imu_sample.delta_ang;
	_delta_vel = imu_sample.delta_vel;
	_delta_ang_dt = imu_sample.delta_ang_dt;
	_delta_vel_dt = imu_sample.delta_vel_dt;
	_run_ekf_gsf = run_EKF;
	_true_airspeed = airspeed;

	// to reduce effect of vibration, filter using an LPF whose time constant is 1/10 of the AHRS tilt correction time constant
	const float filter_coef = fminf(10.0f * _delta_vel_dt * _tilt_gain, 1.0f);
	const Vector3f accel = _delta_vel / fmaxf(_delta_vel_dt, 0.001f);
	_ahrs_accel = _ahrs_accel * (1.0f - filter_coef) + accel * filter_coef;

	// Initialise states first time
	if (!_ahrs_ekf_gsf_tilt_aligned) {
		// check for excessive acceleration to reduce likelihood of large initial roll/pitch errors
		// due to vehicle movement
		const float accel_norm_sq = accel.norm_squared();
		const float upper_accel_limit = CONSTANTS_ONE_G * 1.1f;
		const float lower_accel_limit = CONSTANTS_ONE_G * 0.9f;
		const bool ok_to_align = (accel_norm_sq > sq(lower_accel_limit)) && (accel_norm_sq < sq(upper_accel_limit));
		if (ok_to_align) {
			initialiseEKFGSF();
			ahrsAlignTilt();
			_ahrs_ekf_gsf_tilt_aligned = true;
		}
		return;
	}

	// calculate common values used by the AHRS complementary filter models
	_ahrs_accel_norm = _ahrs_accel.norm();

	// AHRS prediction cycle for each model - this always runs
	_ahrs_accel_fusion_gain = ahrsCalcAccelGain();
	for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
		predictEKF(model_index);
	}

	// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
	if (_run_ekf_gsf && _vel_data_updated) {
		if (!_ekf_gsf_vel_fuse_started) {
			initialiseEKFGSF();
			ahrsAlignYaw();
			// Initialise to gyro bias estimate from main filter because there could be a large
			// uncorrected rate gyro bias error about the gravity vector
			for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
				_ahrs_ekf_gsf[model_index].gyro_bias = imu_gyro_bias;
			}
			_ekf_gsf_vel_fuse_started = true;
		} else {
			bool bad_update = false;
			for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
				// subsequent measurements are fused as direct state observations
				if (!updateEKF(model_index)) {
					bad_update = true;
				}
			}

			if (!bad_update) {
				float total_weight = 0.0f;
				// calculate weighting for each model assuming a normal distribution
				const float min_weight = 1e-5f;
				uint8_t n_weight_clips = 0;
				for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
					_model_weights(model_index) = gaussianDensity(model_index) * _model_weights(model_index);
					if (_model_weights(model_index) < min_weight) {
						n_weight_clips++;
						_model_weights(model_index) = min_weight;
					}
					total_weight += _model_weights(model_index);
				}

				// normalise the weighting function
				if (n_weight_clips < N_MODELS_EKFGSF) {
					_model_weights /= total_weight;
				} else {
					// all weights have collapsed due to excessive innovation variances so reset filters
					initialiseEKFGSF();
				}
			}
		}
	} else if (_ekf_gsf_vel_fuse_started && !_run_ekf_gsf) {
		// wait to fly again
		_ekf_gsf_vel_fuse_started = false;
	}

	// Calculate a composite yaw vector as a weighted average of the states for each model.
	// To avoid issues with angle wrapping, the yaw state is converted to a vector with length
	// equal to the weighting value before it is summed.
	Vector2f yaw_vector;
	for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
		yaw_vector(0) += _model_weights(model_index) * cosf(_ekf_gsf[model_index].X(2));
		yaw_vector(1) += _model_weights(model_index) * sinf(_ekf_gsf[model_index].X(2));
	}
	_gsf_yaw = atan2f(yaw_vector(1),yaw_vector(0));

	// calculate a composite variance for the yaw state from a weighted average of the variance for each model
	// models with larger innovations are weighted less
	_gsf_yaw_variance = 0.0f;
	for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
		const float yaw_delta = wrap_pi(_ekf_gsf[model_index].X(2) - _gsf_yaw);
		_gsf_yaw_variance += _model_weights(model_index) * (_ekf_gsf[model_index].P(2,2) + yaw_delta * yaw_delta);
	}

	// prevent the same velocity data being used more than once
	_vel_data_updated = false;
}

void EKFGSF_yaw::ahrsPredict(const uint8_t model_index)
{
	// generate attitude solution using simple complementary filter for the selected model

	const Vector3f ang_rate = _delta_ang / fmaxf(_delta_ang_dt, 0.001f) - _ahrs_ekf_gsf[model_index].gyro_bias;

	const Dcmf R_to_body = _ahrs_ekf_gsf[model_index].R.transpose();
	const Vector3f gravity_direction_bf = R_to_body.col(2);

	// Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved).
	// During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward
	Vector3f tilt_correction;
	if (_ahrs_accel_fusion_gain > 0.0f) {

		Vector3f accel = _ahrs_accel;

		if (_true_airspeed > FLT_EPSILON) {
			// Calculate body frame centripetal acceleration with assumption X axis is aligned with the airspeed vector
			// Use cross product of body rate and body frame airspeed vector
			const Vector3f centripetal_accel_bf = Vector3f(0.0f, _true_airspeed * ang_rate(2), - _true_airspeed * ang_rate(1));

			// correct measured accel for centripetal acceleration
			accel -= centripetal_accel_bf;
		}

		tilt_correction = (gravity_direction_bf % accel) * _ahrs_accel_fusion_gain / _ahrs_accel_norm;

	}

	// Gyro bias estimation
	constexpr float gyro_bias_limit = 0.05f;
	const float spinRate = ang_rate.length();
	if (spinRate < 0.175f) {
		_ahrs_ekf_gsf[model_index].gyro_bias -= tilt_correction * (_gyro_bias_gain * _delta_ang_dt);
		_ahrs_ekf_gsf[model_index].gyro_bias = matrix::constrain(_ahrs_ekf_gsf[model_index].gyro_bias, -gyro_bias_limit, gyro_bias_limit);
	}

	// delta angle from previous to current frame
	const Vector3f delta_angle_corrected = _delta_ang + (tilt_correction - _ahrs_ekf_gsf[model_index].gyro_bias) * _delta_ang_dt;

	// Apply delta angle to rotation matrix
	_ahrs_ekf_gsf[model_index].R = ahrsPredictRotMat(_ahrs_ekf_gsf[model_index].R, delta_angle_corrected);

}

void EKFGSF_yaw::ahrsAlignTilt()
{
	// Rotation matrix is constructed directly from acceleration measurement and will be the same for
	// all models so only need to calculate it once. Assumptions are:
	// 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences.
	// 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity.

	// Calculate earth frame Down axis unit vector rotated into body frame
	const Vector3f down_in_bf = -_delta_vel.normalized();

	// Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf'
	const Vector3f i_vec_bf(1.0f,0.0f,0.0f);
	Vector3f north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf.dot(down_in_bf));
	north_in_bf.normalize();

	// Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf'
	const Vector3f east_in_bf = down_in_bf % north_in_bf;

	// Each column in a rotation matrix from earth frame to body frame represents the projection of the
	// corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column.
	// We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body
	// frame are copied into corresponding rows instead.
	Dcmf R;
	R.setRow(0, north_in_bf);
	R.setRow(1, east_in_bf);
	R.setRow(2, down_in_bf);

	for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
		_ahrs_ekf_gsf[model_index].R = R;
	}
}

void EKFGSF_yaw::ahrsAlignYaw()
{
	// Align yaw angle for each model
	for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
		Dcmf& R = _ahrs_ekf_gsf[model_index].R;
		const float yaw = wrap_pi(_ekf_gsf[model_index].X(2));
		R = updateYawInRotMat(yaw, R);

		_ahrs_ekf_gsf[model_index].aligned = true;
	}
}

void EKFGSF_yaw::predictEKF(const uint8_t model_index)
{
	// generate an attitude reference using IMU data
	ahrsPredict(model_index);

	// we don't start running the EKF part of the algorithm until there are regular velocity observations
	if (!_ekf_gsf_vel_fuse_started) {
		return;
	}

	// Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock
	const Dcmf& R = _ahrs_ekf_gsf[model_index].R;
	_ekf_gsf[model_index].X(2) = shouldUse321RotationSequence(R) ?
					getEuler321Yaw(R) :
					getEuler312Yaw(R);

	// calculate delta velocity in a horizontal front-right frame
	const Vector3f del_vel_NED = _ahrs_ekf_gsf[model_index].R * _delta_vel;
	const float cos_yaw = cosf(_ekf_gsf[model_index].X(2));
	const float sin_yaw = sinf(_ekf_gsf[model_index].X(2));
	const float dvx =   del_vel_NED(0) * cos_yaw + del_vel_NED(1) * sin_yaw;
	const float dvy = - del_vel_NED(0) * sin_yaw + del_vel_NED(1) * cos_yaw;

	// sum delta velocities in earth frame:
	_ekf_gsf[model_index].X(0) += del_vel_NED(0);
	_ekf_gsf[model_index].X(1) += del_vel_NED(1);

	// predict covariance - equations generated using EKF/python/gsf_ekf_yaw_estimator/main.py

	// Local short variable name copies required for readability
	const float &P00 = _ekf_gsf[model_index].P(0,0);
	const float &P01 = _ekf_gsf[model_index].P(0,1);
	const float &P02 = _ekf_gsf[model_index].P(0,2);
	const float &P11 = _ekf_gsf[model_index].P(1,1);
	const float &P12 = _ekf_gsf[model_index].P(1,2);
	const float &P22 = _ekf_gsf[model_index].P(2,2);
	const float &psi = _ekf_gsf[model_index].X(2);

	// Use fixed values for delta velocity and delta angle process noise variances
	const float dvxVar = sq(_accel_noise * _delta_vel_dt); // variance of forward delta velocity - (m/s)^2
	const float dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2
	const float dazVar = sq(_gyro_noise * _delta_ang_dt); // variance of yaw delta angle - rad^2

	// optimized auto generated code from SymPy script src/lib/ecl/EKF/python/ekf_derivation/main.py
	const float S0 = cosf(psi);
	const float S1 = ecl::powf(S0, 2);
	const float S2 = sinf(psi);
	const float S3 = ecl::powf(S2, 2);
	const float S4 = S0*dvy + S2*dvx;
	const float S5 = P02 - P22*S4;
	const float S6 = S0*dvx - S2*dvy;
	const float S7 = S0*S2;
	const float S8 = P01 + S7*dvxVar - S7*dvyVar;
	const float S9 = P12 + P22*S6;

	_ekf_gsf[model_index].P(0,0) = P00 - P02*S4 + S1*dvxVar + S3*dvyVar - S4*S5;
	_ekf_gsf[model_index].P(0,1) = -P12*S4 + S5*S6 + S8;
	_ekf_gsf[model_index].P(1,1) = P11 + P12*S6 + S1*dvyVar + S3*dvxVar + S6*S9;
	_ekf_gsf[model_index].P(0,2) = S5;
	_ekf_gsf[model_index].P(1,2) = S9;
	_ekf_gsf[model_index].P(2,2) = P22 + dazVar;

	// covariance matrix is symmetrical, so copy upper half to lower half
	_ekf_gsf[model_index].P(1,0) = _ekf_gsf[model_index].P(0,1);
	_ekf_gsf[model_index].P(2,0) = _ekf_gsf[model_index].P(0,2);
	_ekf_gsf[model_index].P(2,1) = _ekf_gsf[model_index].P(1,2);

	// constrain variances
	const float min_var = 1e-6f;
	for (unsigned index = 0; index < 3; index++) {
		_ekf_gsf[model_index].P(index,index) = fmaxf(_ekf_gsf[model_index].P(index,index),min_var);
	}
}

// Update EKF states and covariance for specified model index using velocity measurement
bool EKFGSF_yaw::updateEKF(const uint8_t model_index)
{
	// set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum
	const float velObsVar = sq(fmaxf(_vel_accuracy, 0.01f));

	// calculate velocity observation innovations
	_ekf_gsf[model_index].innov(0) = _ekf_gsf[model_index].X(0) - _vel_NE(0);
	_ekf_gsf[model_index].innov(1) = _ekf_gsf[model_index].X(1) - _vel_NE(1);

	// Use temporary variables for covariance elements to reduce verbosity of auto-code expressions
	const float &P00 = _ekf_gsf[model_index].P(0,0);
	const float &P01 = _ekf_gsf[model_index].P(0,1);
	const float &P02 = _ekf_gsf[model_index].P(0,2);
	const float &P11 = _ekf_gsf[model_index].P(1,1);
	const float &P12 = _ekf_gsf[model_index].P(1,2);
	const float &P22 = _ekf_gsf[model_index].P(2,2);

	// optimized auto generated code from SymPy script src/lib/ecl/EKF/python/ekf_derivation/main.py
	const float t0 = ecl::powf(P01, 2);
	const float t1 = -t0;
	const float t2 = P00*P11 + P00*velObsVar + P11*velObsVar + t1 + ecl::powf(velObsVar, 2);
	if (fabsf(t2) < 1e-6f) {
		return false;
	}
	const float t3 = 1.0F/t2;
	const float t4 = P11 + velObsVar;
	const float t5 = P01*t3;
	const float t6 = -t5;
	const float t7 = P00 + velObsVar;
	const float t8 = P00*t4 + t1;
	const float t9 = t5*velObsVar;
	const float t10 = P11*t7;
	const float t11 = t1 + t10;
	const float t12 = P01*P12;
	const float t13 = P02*t4;
	const float t14 = P01*P02;
	const float t15 = P12*t7;
	const float t16 = t0*velObsVar;
	const float t17 = ecl::powf(t2, -2);
	const float t18 = t4*velObsVar + t8;
	const float t19 = t17*t18;
	const float t20 = t17*(t16 + t7*t8);
	const float t21 = t0 - t10;
	const float t22 = t17*t21;
	const float t23 = t14 - t15;
	const float t24 = P01*t23;
	const float t25 = t12 - t13;
	const float t26 = t16 - t21*t4;
	const float t27 = t17*t26;
	const float t28 = t11 + t7*velObsVar;
	const float t30 = t17*t28;
	const float t31 = P01*t25;
	const float t32 = t23*t4 + t31;
	const float t33 = t17*t32;
	const float t35 = t24 + t25*t7;
	const float t36 = t17*t35;

	_ekf_gsf[model_index].S_det_inverse = t3;

	_ekf_gsf[model_index].S_inverse(0,0) = t3*t4;
	_ekf_gsf[model_index].S_inverse(0,1) = t6;
	_ekf_gsf[model_index].S_inverse(1,1) = t3*t7;
	_ekf_gsf[model_index].S_inverse(1,0) = _ekf_gsf[model_index].S_inverse(0,1);

	matrix::Matrix<float, 3, 2> K;
	K(0,0) = t3*t8;
	K(1,0) = t9;
	K(2,0) = t3*(-t12 + t13);
	K(0,1) = t9;
	K(1,1) = t11*t3;
	K(2,1) = t3*(-t14 + t15);

	_ekf_gsf[model_index].P(0,0) = P00 - t16*t19 - t20*t8;
	_ekf_gsf[model_index].P(0,1) = P01*(t18*t22 - t20*velObsVar + 1);
	_ekf_gsf[model_index].P(1,1) = P11 - t16*t30 + t22*t26;
	_ekf_gsf[model_index].P(0,2) = P02 + t19*t24 + t20*t25;
	_ekf_gsf[model_index].P(1,2) = P12 + t23*t27 + t30*t31;
	_ekf_gsf[model_index].P(2,2) = P22 - t23*t33 - t25*t36;
	_ekf_gsf[model_index].P(1,0) = _ekf_gsf[model_index].P(0,1);
	_ekf_gsf[model_index].P(2,0) = _ekf_gsf[model_index].P(0,2);
	_ekf_gsf[model_index].P(2,1) = _ekf_gsf[model_index].P(1,2);

	// constrain variances
	const float min_var = 1e-6f;
	for (unsigned index = 0; index < 3; index++) {
		_ekf_gsf[model_index].P(index,index) = fmaxf(_ekf_gsf[model_index].P(index,index),min_var);
	}

	// test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1]
	const float test_ratio = _ekf_gsf[model_index].innov * (_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov);

	// Perform a chi-square innovation consistency test and calculate a compression scale factor
	// that limits the magnitude of innovations to 5-sigma
	// If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma
	// This protects from large measurement spikes
	const float innov_comp_scale_factor = test_ratio > 25.f ? sqrtf(25.0f / test_ratio) : 1.f;

	// Correct the state vector and capture the change in yaw angle
	const float oldYaw = _ekf_gsf[model_index].X(2);

	_ekf_gsf[model_index].X -= (K * _ekf_gsf[model_index].innov) * innov_comp_scale_factor;

	const float yawDelta = _ekf_gsf[model_index].X(2) - oldYaw;

	// apply the change in yaw angle to the AHRS
	// take advantage of sparseness in the yaw rotation matrix
	const float cosYaw = cosf(yawDelta);
	const float sinYaw = sinf(yawDelta);
	const float R_prev00 = _ahrs_ekf_gsf[model_index].R(0, 0);
	const float R_prev01 = _ahrs_ekf_gsf[model_index].R(0, 1);
	const float R_prev02 = _ahrs_ekf_gsf[model_index].R(0, 2);

	_ahrs_ekf_gsf[model_index].R(0, 0) = R_prev00 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 0) * sinYaw;
	_ahrs_ekf_gsf[model_index].R(0, 1) = R_prev01 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 1) * sinYaw;
	_ahrs_ekf_gsf[model_index].R(0, 2) = R_prev02 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 2) * sinYaw;
	_ahrs_ekf_gsf[model_index].R(1, 0) = R_prev00 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 0) * cosYaw;
	_ahrs_ekf_gsf[model_index].R(1, 1) = R_prev01 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 1) * cosYaw;
	_ahrs_ekf_gsf[model_index].R(1, 2) = R_prev02 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 2) * cosYaw;

	return true;
}

void EKFGSF_yaw::initialiseEKFGSF()
{
	_gsf_yaw = 0.0f;
	_ekf_gsf_vel_fuse_started = false;
	_gsf_yaw_variance = _m_pi2 * _m_pi2;
	_model_weights.setAll(1.0f / (float)N_MODELS_EKFGSF);  // All filter models start with the same weight

	memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
	const float yaw_increment = 2.0f * _m_pi / (float)N_MODELS_EKFGSF;
	for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
		// evenly space initial yaw estimates in the region between +-Pi
		_ekf_gsf[model_index].X(2) = -_m_pi + (0.5f * yaw_increment) + ((float)model_index * yaw_increment);

		// take velocity states and corresponding variance from last measurement
		_ekf_gsf[model_index].X(0) = _vel_NE(0);
		_ekf_gsf[model_index].X(1) = _vel_NE(1);
		_ekf_gsf[model_index].P(0,0) = sq(_vel_accuracy);
		_ekf_gsf[model_index].P(1,1) = _ekf_gsf[model_index].P(0,0);

		// use half yaw interval for yaw uncertainty
		_ekf_gsf[model_index].P(2,2) = sq(0.5f * yaw_increment);
	}
}

float EKFGSF_yaw::gaussianDensity(const uint8_t model_index) const
{
	// calculate transpose(innovation) * inv(S) * innovation
	const float normDist = _ekf_gsf[model_index].innov.dot(_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov);

	return _m_2pi_inv * sqrtf(_ekf_gsf[model_index].S_det_inverse) * expf(-0.5f * normDist);
}

bool EKFGSF_yaw::getLogData(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]) const
{
	if (_ekf_gsf_vel_fuse_started) {
		*yaw_composite = _gsf_yaw;
		*yaw_variance = _gsf_yaw_variance;
		for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
			yaw[model_index] = _ekf_gsf[model_index].X(2);
			innov_VN[model_index] = _ekf_gsf[model_index].innov(0);
			innov_VE[model_index] = _ekf_gsf[model_index].innov(1);
			weight[model_index] = _model_weights(model_index);
		}
		return true;
	}
	return false;
}

float EKFGSF_yaw::ahrsCalcAccelGain() const
{
	// Calculate the acceleration fusion gain using a continuous function that is unity at 1g and zero
	// at the min and max g value. Allow for more acceleration when flying as a fixed wing vehicle using centripetal
	// acceleration correction as higher and more sustained g will be experienced.
	// Use a quadratic instead of linear function to prevent vibration around 1g reducing the tilt correction effectiveness.
	// see https://www.desmos.com/calculator/dbqbxvnwfg

	float attenuation = 2.f;
	const bool centripetal_accel_compensation_enabled = (_true_airspeed > FLT_EPSILON);

	if (centripetal_accel_compensation_enabled
	    && _ahrs_accel_norm > CONSTANTS_ONE_G) {
		attenuation = 1.f;
	}

	const float delta_accel_g = (_ahrs_accel_norm - CONSTANTS_ONE_G) / CONSTANTS_ONE_G;
	return _tilt_gain * sq(1.f - math::min(attenuation * fabsf(delta_accel_g), 1.f));
}

Matrix3f EKFGSF_yaw::ahrsPredictRotMat(const Matrix3f &R, const Vector3f &g)
{
	Matrix3f ret = R;
	ret(0,0) += R(0,1) * g(2) - R(0,2) * g(1);
	ret(0,1) += R(0,2) * g(0) - R(0,0) * g(2);
	ret(0,2) += R(0,0) * g(1) - R(0,1) * g(0);
	ret(1,0) += R(1,1) * g(2) - R(1,2) * g(1);
	ret(1,1) += R(1,2) * g(0) - R(1,0) * g(2);
	ret(1,2) += R(1,0) * g(1) - R(1,1) * g(0);
	ret(2,0) += R(2,1) * g(2) - R(2,2) * g(1);
	ret(2,1) += R(2,2) * g(0) - R(2,0) * g(2);
	ret(2,2) += R(2,0) * g(1) - R(2,1) * g(0);

	// Renormalise rows
	for (uint8_t r = 0; r < 3; r++) {
		const float rowLengthSq = ret.row(r).norm_squared();
		if (rowLengthSq > FLT_EPSILON) {
			// Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0
			const float rowLengthInv = 1.5f - 0.5f * rowLengthSq;
			ret.row(r) *=  rowLengthInv;
		}
        }

	return ret;
}

bool EKFGSF_yaw::getYawData(float *yaw, float *yaw_variance) const
{
	if(_ekf_gsf_vel_fuse_started) {
		*yaw = _gsf_yaw;
		*yaw_variance = _gsf_yaw_variance;
		return true;
	}
	return false;
}

void EKFGSF_yaw::setVelocity(const Vector2f &velocity, float accuracy)
{
	_vel_NE = velocity;
	_vel_accuracy = accuracy;
	_vel_data_updated = true;
}