MultirotorMixer.cpp
15.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/****************************************************************************
*
* Copyright (c) 2012-2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mixer_multirotor.cpp
*
* Multi-rotor mixers.
*/
#include "MultirotorMixer.hpp"
#include <float.h>
#include <cstring>
#include <cstdio>
#include <mathlib/mathlib.h>
#ifdef MIXER_MULTIROTOR_USE_MOCK_GEOMETRY
enum class MultirotorGeometry : MultirotorGeometryUnderlyingType {
QUAD_X,
MAX_GEOMETRY
};
namespace
{
const MultirotorMixer::Rotor _config_quad_x[] = {
{ -0.707107, 0.707107, 1.000000, 1.000000 },
{ 0.707107, -0.707107, 1.000000, 1.000000 },
{ 0.707107, 0.707107, -1.000000, 1.000000 },
{ -0.707107, -0.707107, -1.000000, 1.000000 },
};
const MultirotorMixer::Rotor *_config_index[] = {
&_config_quad_x[0]
};
const unsigned _config_rotor_count[] = {4};
const char *_config_key[] = {"4x"};
}
#else
// This file is generated by the px_generate_mixers.py script which is invoked during the build process
// #include "mixer_multirotor.generated.h"
#include "mixer_multirotor_normalized.generated.h"
#endif /* MIXER_MULTIROTOR_USE_MOCK_GEOMETRY */
#define debug(fmt, args...) do { } while(0)
//#define debug(fmt, args...) do { printf("[mixer] " fmt "\n", ##args); } while(0)
//#include <debug.h>
//#define debug(fmt, args...) syslog(fmt "\n", ##args)
MultirotorMixer::MultirotorMixer(ControlCallback control_cb, uintptr_t cb_handle, MultirotorGeometry geometry) :
MultirotorMixer(control_cb, cb_handle, _config_index[(int)geometry], _config_rotor_count[(int)geometry])
{
}
MultirotorMixer::MultirotorMixer(ControlCallback control_cb, uintptr_t cb_handle, const Rotor *rotors,
unsigned rotor_count) :
Mixer(control_cb, cb_handle),
_rotor_count(rotor_count),
_rotors(rotors),
_outputs_prev(new float[_rotor_count]),
_tmp_array(new float[_rotor_count])
{
for (unsigned i = 0; i < _rotor_count; ++i) {
_outputs_prev[i] = -1.f;
}
}
MultirotorMixer::~MultirotorMixer()
{
delete[] _outputs_prev;
delete[] _tmp_array;
}
MultirotorMixer *
MultirotorMixer::from_text(Mixer::ControlCallback control_cb, uintptr_t cb_handle, const char *buf, unsigned &buflen)
{
MultirotorGeometry geometry = MultirotorGeometry::MAX_GEOMETRY;
char geomname[16];
/* enforce that the mixer ends with a new line */
if (!string_well_formed(buf, buflen)) {
return nullptr;
}
if (sscanf(buf, "R: %15s", geomname) != 1) {
debug("multirotor parse failed on '%s'", buf);
return nullptr;
}
buf = skipline(buf, buflen);
if (buf == nullptr) {
debug("no line ending, line is incomplete");
return nullptr;
}
debug("remaining in buf: %d, first char: %c", buflen, buf[0]);
for (MultirotorGeometryUnderlyingType i = 0; i < (MultirotorGeometryUnderlyingType)MultirotorGeometry::MAX_GEOMETRY;
i++) {
if (!strcmp(geomname, _config_key[i])) {
geometry = (MultirotorGeometry)i;
break;
}
}
if (geometry == MultirotorGeometry::MAX_GEOMETRY) {
debug("unrecognised geometry '%s'", geomname);
return nullptr;
}
debug("adding multirotor mixer '%s'", geomname);
return new MultirotorMixer(control_cb, cb_handle, geometry);
}
float
MultirotorMixer::compute_desaturation_gain(const float *desaturation_vector, const float *outputs,
saturation_status &sat_status, float min_output, float max_output) const
{
float k_min = 0.f;
float k_max = 0.f;
for (unsigned i = 0; i < _rotor_count; i++) {
// Avoid division by zero. If desaturation_vector[i] is zero, there's nothing we can do to unsaturate anyway
if (fabsf(desaturation_vector[i]) < FLT_EPSILON) {
continue;
}
if (outputs[i] < min_output) {
float k = (min_output - outputs[i]) / desaturation_vector[i];
if (k < k_min) { k_min = k; }
if (k > k_max) { k_max = k; }
sat_status.flags.motor_neg = true;
}
if (outputs[i] > max_output) {
float k = (max_output - outputs[i]) / desaturation_vector[i];
if (k < k_min) { k_min = k; }
if (k > k_max) { k_max = k; }
sat_status.flags.motor_pos = true;
}
}
// Reduce the saturation as much as possible
return k_min + k_max;
}
void
MultirotorMixer::minimize_saturation(const float *desaturation_vector, float *outputs,
saturation_status &sat_status, float min_output, float max_output, bool reduce_only) const
{
float k1 = compute_desaturation_gain(desaturation_vector, outputs, sat_status, min_output, max_output);
if (reduce_only && k1 > 0.f) {
return;
}
for (unsigned i = 0; i < _rotor_count; i++) {
outputs[i] += k1 * desaturation_vector[i];
}
// Compute the desaturation gain again based on the updated outputs.
// In most cases it will be zero. It won't be if max(outputs) - min(outputs) > max_output - min_output.
// In that case adding 0.5 of the gain will equilibrate saturations.
float k2 = 0.5f * compute_desaturation_gain(desaturation_vector, outputs, sat_status, min_output, max_output);
for (unsigned i = 0; i < _rotor_count; i++) {
outputs[i] += k2 * desaturation_vector[i];
}
}
void
MultirotorMixer::mix_airmode_rp(float roll, float pitch, float yaw, float thrust, float *outputs)
{
// Airmode for roll and pitch, but not yaw
// Mix without yaw
for (unsigned i = 0; i < _rotor_count; i++) {
outputs[i] = roll * _rotors[i].roll_scale +
pitch * _rotors[i].pitch_scale +
thrust * _rotors[i].thrust_scale;
// Thrust will be used to unsaturate if needed
_tmp_array[i] = _rotors[i].thrust_scale;
}
minimize_saturation(_tmp_array, outputs, _saturation_status);
// Mix yaw independently
mix_yaw(yaw, outputs);
}
void
MultirotorMixer::mix_airmode_rpy(float roll, float pitch, float yaw, float thrust, float *outputs)
{
// Airmode for roll, pitch and yaw
// Do full mixing
for (unsigned i = 0; i < _rotor_count; i++) {
outputs[i] = roll * _rotors[i].roll_scale +
pitch * _rotors[i].pitch_scale +
yaw * _rotors[i].yaw_scale +
thrust * _rotors[i].thrust_scale;
// Thrust will be used to unsaturate if needed
_tmp_array[i] = _rotors[i].thrust_scale;
}
minimize_saturation(_tmp_array, outputs, _saturation_status);
// Unsaturate yaw (in case upper and lower bounds are exceeded)
// to prioritize roll/pitch over yaw.
for (unsigned i = 0; i < _rotor_count; i++) {
_tmp_array[i] = _rotors[i].yaw_scale;
}
minimize_saturation(_tmp_array, outputs, _saturation_status);
}
void
MultirotorMixer::mix_airmode_disabled(float roll, float pitch, float yaw, float thrust, float *outputs)
{
// Airmode disabled: never allow to increase the thrust to unsaturate a motor
// Mix without yaw
for (unsigned i = 0; i < _rotor_count; i++) {
outputs[i] = roll * _rotors[i].roll_scale +
pitch * _rotors[i].pitch_scale +
thrust * _rotors[i].thrust_scale;
// Thrust will be used to unsaturate if needed
_tmp_array[i] = _rotors[i].thrust_scale;
}
// only reduce thrust
minimize_saturation(_tmp_array, outputs, _saturation_status, 0.f, 1.f, true);
// Reduce roll/pitch acceleration if needed to unsaturate
for (unsigned i = 0; i < _rotor_count; i++) {
_tmp_array[i] = _rotors[i].roll_scale;
}
minimize_saturation(_tmp_array, outputs, _saturation_status);
for (unsigned i = 0; i < _rotor_count; i++) {
_tmp_array[i] = _rotors[i].pitch_scale;
}
minimize_saturation(_tmp_array, outputs, _saturation_status);
// Mix yaw independently
mix_yaw(yaw, outputs);
}
void MultirotorMixer::mix_yaw(float yaw, float *outputs)
{
// Add yaw to outputs
for (unsigned i = 0; i < _rotor_count; i++) {
outputs[i] += yaw * _rotors[i].yaw_scale;
// Yaw will be used to unsaturate if needed
_tmp_array[i] = _rotors[i].yaw_scale;
}
// Change yaw acceleration to unsaturate the outputs if needed (do not change roll/pitch),
// and allow some yaw response at maximum thrust
minimize_saturation(_tmp_array, outputs, _saturation_status, 0.f, 1.15f);
for (unsigned i = 0; i < _rotor_count; i++) {
_tmp_array[i] = _rotors[i].thrust_scale;
}
// reduce thrust only
minimize_saturation(_tmp_array, outputs, _saturation_status, 0.f, 1.f, true);
}
unsigned
MultirotorMixer::mix(float *outputs, unsigned space)
{
if (space < _rotor_count) {
return 0;
}
float roll = math::constrain(get_control(0, 0), -1.0f, 1.0f);
float pitch = math::constrain(get_control(0, 1), -1.0f, 1.0f);
float yaw = math::constrain(get_control(0, 2), -1.0f, 1.0f);
float thrust = math::constrain(get_control(0, 3), 0.0f, 1.0f);
// clean out class variable used to capture saturation
_saturation_status.value = 0;
// Do the mixing using the strategy given by the current Airmode configuration
switch (_airmode) {
case Airmode::roll_pitch:
mix_airmode_rp(roll, pitch, yaw, thrust, outputs);
break;
case Airmode::roll_pitch_yaw:
mix_airmode_rpy(roll, pitch, yaw, thrust, outputs);
break;
case Airmode::disabled:
default: // just in case: default to disabled
mix_airmode_disabled(roll, pitch, yaw, thrust, outputs);
break;
}
// Apply thrust model and scale outputs to range [idle_speed, 1].
// At this point the outputs are expected to be in [0, 1], but they can be outside, for example
// if a roll command exceeds the motor band limit.
for (unsigned i = 0; i < _rotor_count; i++) {
// Implement simple model for static relationship between applied motor pwm and motor thrust
// model: thrust = (1 - _thrust_factor) * PWM + _thrust_factor * PWM^2
if (_thrust_factor > 0.0f) {
outputs[i] = -(1.0f - _thrust_factor) / (2.0f * _thrust_factor) + sqrtf((1.0f - _thrust_factor) *
(1.0f - _thrust_factor) / (4.0f * _thrust_factor * _thrust_factor) + (outputs[i] < 0.0f ? 0.0f : outputs[i] /
_thrust_factor));
}
outputs[i] = math::constrain((2.f * outputs[i] - 1.f), -1.f, 1.f);
}
// Slew rate limiting and saturation checking
for (unsigned i = 0; i < _rotor_count; i++) {
bool clipping_high = false;
bool clipping_low_roll_pitch = false;
bool clipping_low_yaw = false;
// Check for saturation against static limits.
// We only check for low clipping if airmode is disabled (or yaw
// clipping if airmode==roll/pitch), since in all other cases thrust will
// be reduced or boosted and we can keep the integrators enabled, which
// leads to better tracking performance.
if (outputs[i] < -0.99f) {
if (_airmode == Airmode::disabled) {
clipping_low_roll_pitch = true;
clipping_low_yaw = true;
} else if (_airmode == Airmode::roll_pitch) {
clipping_low_yaw = true;
}
}
// check for saturation against slew rate limits
if (_delta_out_max > 0.0f) {
float delta_out = outputs[i] - _outputs_prev[i];
if (delta_out > _delta_out_max) {
outputs[i] = _outputs_prev[i] + _delta_out_max;
clipping_high = true;
} else if (delta_out < -_delta_out_max) {
outputs[i] = _outputs_prev[i] - _delta_out_max;
clipping_low_roll_pitch = true;
clipping_low_yaw = true;
}
}
_outputs_prev[i] = outputs[i];
// update the saturation status report
update_saturation_status(i, clipping_high, clipping_low_roll_pitch, clipping_low_yaw);
}
// this will force the caller of the mixer to always supply new slew rate values, otherwise no slew rate limiting will happen
_delta_out_max = 0.0f;
return _rotor_count;
}
/*
* This function update the control saturation status report using the following inputs:
*
* index: 0 based index identifying the motor that is saturating
* clipping_high: true if the motor demand is being limited in the positive direction
* clipping_low_roll_pitch: true if the motor demand is being limited in the negative direction (roll/pitch)
* clipping_low_yaw: true if the motor demand is being limited in the negative direction (yaw)
*/
void
MultirotorMixer::update_saturation_status(unsigned index, bool clipping_high, bool clipping_low_roll_pitch,
bool clipping_low_yaw)
{
// The motor is saturated at the upper limit
// check which control axes and which directions are contributing
if (clipping_high) {
if (_rotors[index].roll_scale > 0.0f) {
// A positive change in roll will increase saturation
_saturation_status.flags.roll_pos = true;
} else if (_rotors[index].roll_scale < 0.0f) {
// A negative change in roll will increase saturation
_saturation_status.flags.roll_neg = true;
}
// check if the pitch input is saturating
if (_rotors[index].pitch_scale > 0.0f) {
// A positive change in pitch will increase saturation
_saturation_status.flags.pitch_pos = true;
} else if (_rotors[index].pitch_scale < 0.0f) {
// A negative change in pitch will increase saturation
_saturation_status.flags.pitch_neg = true;
}
// check if the yaw input is saturating
if (_rotors[index].yaw_scale > 0.0f) {
// A positive change in yaw will increase saturation
_saturation_status.flags.yaw_pos = true;
} else if (_rotors[index].yaw_scale < 0.0f) {
// A negative change in yaw will increase saturation
_saturation_status.flags.yaw_neg = true;
}
// A positive change in thrust will increase saturation
_saturation_status.flags.thrust_pos = true;
}
// The motor is saturated at the lower limit
// check which control axes and which directions are contributing
if (clipping_low_roll_pitch) {
// check if the roll input is saturating
if (_rotors[index].roll_scale > 0.0f) {
// A negative change in roll will increase saturation
_saturation_status.flags.roll_neg = true;
} else if (_rotors[index].roll_scale < 0.0f) {
// A positive change in roll will increase saturation
_saturation_status.flags.roll_pos = true;
}
// check if the pitch input is saturating
if (_rotors[index].pitch_scale > 0.0f) {
// A negative change in pitch will increase saturation
_saturation_status.flags.pitch_neg = true;
} else if (_rotors[index].pitch_scale < 0.0f) {
// A positive change in pitch will increase saturation
_saturation_status.flags.pitch_pos = true;
}
// A negative change in thrust will increase saturation
_saturation_status.flags.thrust_neg = true;
}
if (clipping_low_yaw) {
// check if the yaw input is saturating
if (_rotors[index].yaw_scale > 0.0f) {
// A negative change in yaw will increase saturation
_saturation_status.flags.yaw_neg = true;
} else if (_rotors[index].yaw_scale < 0.0f) {
// A positive change in yaw will increase saturation
_saturation_status.flags.yaw_pos = true;
}
}
_saturation_status.flags.valid = true;
}