VehicleIMU.cpp
18.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "VehicleIMU.hpp"
#include <px4_platform_common/log.h>
#include <lib/systemlib/mavlink_log.h>
#include <float.h>
using namespace matrix;
using math::constrain;
namespace sensors
{
VehicleIMU::VehicleIMU(int instance, uint8_t accel_index, uint8_t gyro_index, const px4::wq_config_t &config) :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, config),
_sensor_accel_sub(this, ORB_ID(sensor_accel), accel_index),
_sensor_gyro_sub(this, ORB_ID(sensor_gyro), gyro_index),
_instance(instance)
{
const float configured_interval_us = 1e6f / _param_imu_integ_rate.get();
_accel_integrator.set_reset_interval(configured_interval_us);
_accel_integrator.set_reset_samples(sensor_accel_s::ORB_QUEUE_LENGTH);
_gyro_integrator.set_reset_interval(configured_interval_us);
_gyro_integrator.set_reset_samples(sensor_gyro_s::ORB_QUEUE_LENGTH);
#if defined(ENABLE_LOCKSTEP_SCHEDULER)
// currently with lockstep every raw sample needs a corresponding vehicle_imu publication
_sensor_accel_sub.set_required_updates(1);
_sensor_gyro_sub.set_required_updates(1);
#else
// schedule conservatively until the actual accel & gyro rates are known
_sensor_accel_sub.set_required_updates(sensor_accel_s::ORB_QUEUE_LENGTH / 2);
_sensor_gyro_sub.set_required_updates(sensor_gyro_s::ORB_QUEUE_LENGTH / 2);
#endif
// advertise immediately to ensure consistent ordering
_vehicle_imu_pub.advertise();
_vehicle_imu_status_pub.advertise();
}
VehicleIMU::~VehicleIMU()
{
Stop();
perf_free(_accel_generation_gap_perf);
perf_free(_accel_update_perf);
perf_free(_gyro_generation_gap_perf);
perf_free(_gyro_update_perf);
_vehicle_imu_pub.unadvertise();
_vehicle_imu_status_pub.unadvertise();
}
bool VehicleIMU::Start()
{
// force initial updates
ParametersUpdate(true);
_sensor_gyro_sub.registerCallback();
_sensor_accel_sub.registerCallback();
ScheduleNow();
return true;
}
void VehicleIMU::Stop()
{
// clear all registered callbacks
_sensor_accel_sub.unregisterCallback();
_sensor_gyro_sub.unregisterCallback();
Deinit();
}
void VehicleIMU::ParametersUpdate(bool force)
{
// Check if parameters have changed
if (_parameter_update_sub.updated() || force) {
// clear update
parameter_update_s param_update;
_parameter_update_sub.copy(¶m_update);
const auto imu_integ_rate_prev = _param_imu_integ_rate.get();
updateParams();
_accel_calibration.ParametersUpdate();
_gyro_calibration.ParametersUpdate();
// constrain IMU integration time 1-10 milliseconds (100-1000 Hz)
int32_t imu_integration_rate_hz = constrain(_param_imu_integ_rate.get(),
100, math::max(_param_imu_gyro_ratemax.get(), 1000));
if (imu_integration_rate_hz != _param_imu_integ_rate.get()) {
PX4_WARN("IMU_INTEG_RATE updated %d -> %d", _param_imu_integ_rate.get(), imu_integration_rate_hz);
_param_imu_integ_rate.set(imu_integration_rate_hz);
_param_imu_integ_rate.commit_no_notification();
}
_imu_integration_interval_us = 1000000 / imu_integration_rate_hz;
if (_param_imu_integ_rate.get() != imu_integ_rate_prev) {
// force update
UpdateIntegratorConfiguration();
}
}
}
bool VehicleIMU::UpdateIntervalAverage(IntervalAverage &intavg, const hrt_abstime ×tamp_sample, uint8_t samples)
{
bool updated = false;
// conservative maximum time between samples to reject large gaps and reset averaging
uint32_t max_interval_us = 10000; // 100 Hz
uint32_t min_interval_us = 100; // 10,000 Hz
if (intavg.update_interval > 0.f) {
// if available use previously calculated interval as bounds
max_interval_us = roundf(1.5f * intavg.update_interval);
min_interval_us = roundf(0.5f * intavg.update_interval);
}
const uint32_t interval_us = (timestamp_sample - intavg.timestamp_sample_last);
if ((intavg.timestamp_sample_last > 0) && (interval_us < max_interval_us) && (interval_us > min_interval_us)) {
intavg.interval_sum += interval_us;
intavg.interval_samples += samples;
intavg.interval_count++;
// periodically calculate sensor update rate
if (intavg.interval_count > 10000 || ((intavg.update_interval <= FLT_EPSILON) && intavg.interval_count > 100)) {
const float sample_interval_avg = (float)intavg.interval_sum / (float)intavg.interval_count;
if (PX4_ISFINITE(sample_interval_avg) && (sample_interval_avg > 0.f)) {
// update if interval has changed by more than 0.5%
if ((fabsf(intavg.update_interval - sample_interval_avg) / intavg.update_interval) > 0.005f) {
intavg.update_interval = sample_interval_avg;
intavg.update_interval_raw = (float)intavg.interval_sum / (float)intavg.interval_samples;
updated = true;
}
}
// reset sample interval accumulator
intavg.interval_sum = 0.f;
intavg.interval_samples = 0;
intavg.interval_count = 0;
}
} else {
// reset
intavg.interval_sum = 0.f;
intavg.interval_samples = 0;
intavg.interval_count = 0;
}
intavg.timestamp_sample_last = timestamp_sample;
return updated;
}
void VehicleIMU::Run()
{
// backup schedule
ScheduleDelayed(10_ms);
ParametersUpdate();
if (!_accel_calibration.enabled() || !_gyro_calibration.enabled()) {
return;
}
bool sensor_data_gap = false;
bool update_integrator_config = false;
bool publish_status = false;
// integrate queued gyro
sensor_gyro_s gyro;
while (_sensor_gyro_sub.update(&gyro)) {
perf_count_interval(_gyro_update_perf, gyro.timestamp_sample);
if (_sensor_gyro_sub.get_last_generation() != _gyro_last_generation + 1) {
sensor_data_gap = true;
perf_count(_gyro_generation_gap_perf);
_gyro_interval.timestamp_sample_last = 0; // invalidate any ongoing publication rate averaging
} else {
// collect sample interval average for filters
if (!_intervals_configured && UpdateIntervalAverage(_gyro_interval, gyro.timestamp_sample, gyro.samples)) {
update_integrator_config = true;
publish_status = true;
_status.gyro_rate_hz = 1e6f / _gyro_interval.update_interval;
_status.gyro_raw_rate_hz = 1e6f / _gyro_interval.update_interval_raw;
}
}
_gyro_last_generation = _sensor_gyro_sub.get_last_generation();
_gyro_calibration.set_device_id(gyro.device_id);
if (gyro.error_count != _status.gyro_error_count) {
publish_status = true;
_status.gyro_error_count = gyro.error_count;
}
const Vector3f gyro_raw{gyro.x, gyro.y, gyro.z};
_gyro_sum += gyro_raw;
_gyro_temperature += gyro.temperature;
_gyro_sum_count++;
_gyro_integrator.put(gyro.timestamp_sample, gyro_raw);
_last_timestamp_sample_gyro = gyro.timestamp_sample;
// break if interval is configured and we haven't fallen behind
if (_intervals_configured && _gyro_integrator.integral_ready()
&& (hrt_elapsed_time(&gyro.timestamp) < _imu_integration_interval_us) && !sensor_data_gap) {
break;
}
}
// update accel, stopping once caught up to the last gyro sample
sensor_accel_s accel;
while (_sensor_accel_sub.update(&accel)) {
perf_count_interval(_accel_update_perf, accel.timestamp_sample);
if (_sensor_accel_sub.get_last_generation() != _accel_last_generation + 1) {
sensor_data_gap = true;
perf_count(_accel_generation_gap_perf);
_accel_interval.timestamp_sample_last = 0; // invalidate any ongoing publication rate averaging
} else {
// collect sample interval average for filters
if (!_intervals_configured && UpdateIntervalAverage(_accel_interval, accel.timestamp_sample, accel.samples)) {
update_integrator_config = true;
publish_status = true;
_status.accel_rate_hz = 1e6f / _accel_interval.update_interval;
_status.accel_raw_rate_hz = 1e6f / _accel_interval.update_interval_raw;
}
}
_accel_last_generation = _sensor_accel_sub.get_last_generation();
_accel_calibration.set_device_id(accel.device_id);
if (accel.error_count != _status.accel_error_count) {
publish_status = true;
_status.accel_error_count = accel.error_count;
}
const Vector3f accel_raw{accel.x, accel.y, accel.z};
_accel_sum += accel_raw;
_accel_temperature += accel.temperature;
_accel_sum_count++;
_accel_integrator.put(accel.timestamp_sample, accel_raw);
_last_timestamp_sample_accel = accel.timestamp_sample;
if (accel.clip_counter[0] > 0 || accel.clip_counter[1] > 0 || accel.clip_counter[2] > 0) {
// rotate sensor clip counts into vehicle body frame
const Vector3f clipping{_accel_calibration.rotation() *
Vector3f{(float)accel.clip_counter[0], (float)accel.clip_counter[1], (float)accel.clip_counter[2]}};
// round to get reasonble clip counts per axis (after board rotation)
const uint8_t clip_x = roundf(fabsf(clipping(0)));
const uint8_t clip_y = roundf(fabsf(clipping(1)));
const uint8_t clip_z = roundf(fabsf(clipping(2)));
_status.accel_clipping[0] += clip_x;
_status.accel_clipping[1] += clip_y;
_status.accel_clipping[2] += clip_z;
if (clip_x > 0) {
_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_X;
}
if (clip_y > 0) {
_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_Y;
}
if (clip_z > 0) {
_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_Z;
}
publish_status = true;
// start notifying the user periodically if there's significant continuous clipping
const uint64_t clipping_total = _status.accel_clipping[0] + _status.accel_clipping[1] + _status.accel_clipping[2];
if ((hrt_elapsed_time(&_last_clipping_notify_time) > 3_s)
&& (clipping_total > _last_clipping_notify_total_count + 100)) {
mavlink_log_critical(&_mavlink_log_pub, "Accel %d clipping, land immediately!", _instance);
_last_clipping_notify_time = accel.timestamp_sample;
_last_clipping_notify_total_count = clipping_total;
}
}
// break once caught up to gyro
if (!sensor_data_gap && _intervals_configured
&& (_last_timestamp_sample_accel >= (_last_timestamp_sample_gyro - 0.5f * _accel_interval.update_interval))) {
break;
}
}
if (sensor_data_gap) {
_consecutive_data_gap++;
// if there's consistently a gap in data start monitoring publication interval again
if (_consecutive_data_gap > 10) {
_intervals_configured = false;
}
} else {
_consecutive_data_gap = 0;
}
// reconfigure integrators if calculated sensor intervals have changed
if (update_integrator_config) {
UpdateIntegratorConfiguration();
}
// publish if both accel & gyro integrators are ready
if (_accel_integrator.integral_ready() && _gyro_integrator.integral_ready()) {
uint32_t accel_integral_dt;
uint32_t gyro_integral_dt;
Vector3f delta_angle;
Vector3f delta_velocity;
if (_accel_integrator.reset(delta_velocity, accel_integral_dt)
&& _gyro_integrator.reset(delta_angle, gyro_integral_dt)) {
if (_accel_calibration.enabled() && _gyro_calibration.enabled()) {
// delta angle: apply offsets, scale, and board rotation
_gyro_calibration.SensorCorrectionsUpdate();
const float gyro_dt_inv = 1.e6f / gyro_integral_dt;
const Vector3f delta_angle_corrected{_gyro_calibration.Correct(delta_angle * gyro_dt_inv) / gyro_dt_inv};
// delta velocity: apply offsets, scale, and board rotation
_accel_calibration.SensorCorrectionsUpdate();
const float accel_dt_inv = 1.e6f / accel_integral_dt;
Vector3f delta_velocity_corrected{_accel_calibration.Correct(delta_velocity * accel_dt_inv) / accel_dt_inv};
UpdateAccelVibrationMetrics(delta_velocity_corrected);
UpdateGyroVibrationMetrics(delta_angle_corrected);
// vehicle_imu_status
// publish before vehicle_imu so that error counts are available synchronously if needed
if (publish_status || (hrt_elapsed_time(&_status.timestamp) >= 100_ms)) {
_status.accel_device_id = _accel_calibration.device_id();
_status.gyro_device_id = _gyro_calibration.device_id();
// mean accel
const Vector3f accel_mean{_accel_calibration.Correct(_accel_sum / _accel_sum_count)};
accel_mean.copyTo(_status.mean_accel);
_status.temperature_accel = _accel_temperature / _accel_sum_count;
_accel_sum.zero();
_accel_temperature = 0;
_accel_sum_count = 0;
// mean gyro
const Vector3f gyro_mean{_gyro_calibration.Correct(_gyro_sum / _gyro_sum_count)};
gyro_mean.copyTo(_status.mean_gyro);
_status.temperature_gyro = _gyro_temperature / _gyro_sum_count;
_gyro_sum.zero();
_gyro_temperature = 0;
_gyro_sum_count = 0;
_status.timestamp = hrt_absolute_time();
_vehicle_imu_status_pub.publish(_status);
}
// publish vehicle_imu
vehicle_imu_s imu;
imu.timestamp_sample = _last_timestamp_sample_gyro;
imu.accel_device_id = _accel_calibration.device_id();
imu.gyro_device_id = _gyro_calibration.device_id();
delta_angle_corrected.copyTo(imu.delta_angle);
delta_velocity_corrected.copyTo(imu.delta_velocity);
imu.delta_angle_dt = gyro_integral_dt;
imu.delta_velocity_dt = accel_integral_dt;
imu.delta_velocity_clipping = _delta_velocity_clipping;
imu.calibration_count = _accel_calibration.calibration_count() + _gyro_calibration.calibration_count();
imu.timestamp = hrt_absolute_time();
_vehicle_imu_pub.publish(imu);
}
// reset clip counts
_delta_velocity_clipping = 0;
return;
}
}
}
void VehicleIMU::UpdateIntegratorConfiguration()
{
if ((_accel_interval.update_interval > 0) && (_gyro_interval.update_interval > 0)) {
const float configured_interval_us = 1e6f / _param_imu_integ_rate.get();
// determine number of sensor samples that will get closest to the desired integration interval
const uint8_t accel_integral_samples = math::max(1.f, roundf(configured_interval_us / _accel_interval.update_interval));
const uint8_t gyro_integral_samples = math::max(1.f, roundf(configured_interval_us / _gyro_interval.update_interval));
// let the gyro set the configuration and scheduling
// accel integrator will be forced to reset when gyro integrator is ready
_gyro_integrator.set_reset_samples(gyro_integral_samples);
_accel_integrator.set_reset_samples(1);
// relaxed minimum integration time required
_accel_integrator.set_reset_interval(roundf((accel_integral_samples - 0.5f) * _accel_interval.update_interval));
_gyro_integrator.set_reset_interval(roundf((gyro_integral_samples - 0.5f) * _gyro_interval.update_interval));
// gyro: find largest integer multiple of gyro_integral_samples
for (int n = sensor_gyro_s::ORB_QUEUE_LENGTH; n > 0; n--) {
if (gyro_integral_samples % n == 0) {
_sensor_gyro_sub.set_required_updates(n);
// run when there are enough new gyro samples, unregister accel
_sensor_accel_sub.unregisterCallback();
_intervals_configured = true; // stop monitoring topic publication rates
PX4_DEBUG("accel (%d), gyro (%d), accel samples: %d, gyro samples: %d, accel interval: %.1f, gyro interval: %.1f sub samples: %d",
_accel_calibration.device_id(), _gyro_calibration.device_id(), accel_integral_samples, gyro_integral_samples,
(double)_accel_interval.update_interval, (double)_gyro_interval.update_interval, n);
break;
}
}
}
}
void VehicleIMU::UpdateAccelVibrationMetrics(const Vector3f &delta_velocity)
{
// Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
const Vector3f delta_velocity_diff = delta_velocity - _delta_velocity_prev;
_status.accel_vibration_metric = 0.99f * _status.accel_vibration_metric + 0.01f * delta_velocity_diff.norm();
_delta_velocity_prev = delta_velocity;
}
void VehicleIMU::UpdateGyroVibrationMetrics(const Vector3f &delta_angle)
{
// Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
const Vector3f delta_angle_diff = delta_angle - _delta_angle_prev;
_status.gyro_vibration_metric = 0.99f * _status.gyro_vibration_metric + 0.01f * delta_angle_diff.norm();
// Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
const Vector3f coning_metric = delta_angle % _delta_angle_prev;
_status.gyro_coning_vibration = 0.99f * _status.gyro_coning_vibration + 0.01f * coning_metric.norm();
_delta_angle_prev = delta_angle;
}
void VehicleIMU::PrintStatus()
{
if (_accel_calibration.device_id() == _gyro_calibration.device_id()) {
PX4_INFO("%d - IMU ID: %d, accel interval: %.1f us, gyro interval: %.1f us", _instance, _accel_calibration.device_id(),
(double)_accel_interval.update_interval, (double)_gyro_interval.update_interval);
} else {
PX4_INFO("%d - Accel ID: %d, interval: %.1f us, Gyro ID: %d, interval: %.1f us", _instance,
_accel_calibration.device_id(),
(double)_accel_interval.update_interval, _gyro_calibration.device_id(), (double)_gyro_interval.update_interval);
}
perf_print_counter(_accel_generation_gap_perf);
perf_print_counter(_gyro_generation_gap_perf);
perf_print_counter(_accel_update_perf);
perf_print_counter(_gyro_update_perf);
_accel_calibration.PrintStatus();
_gyro_calibration.PrintStatus();
}
} // namespace sensors