common.h
10.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#ifndef SITL_GAZEBO_COMMON_H_
#define SITL_GAZEBO_COMMON_H_
/*
* Copyright 2015 Fadri Furrer, ASL, ETH Zurich, Switzerland
* Copyright 2015 Michael Burri, ASL, ETH Zurich, Switzerland
* Copyright 2015 Mina Kamel, ASL, ETH Zurich, Switzerland
* Copyright 2015 Janosch Nikolic, ASL, ETH Zurich, Switzerland
* Copyright 2015 Markus Achtelik, ASL, ETH Zurich, Switzerland
* Copyright 2015 Markus Achtelik, ASL, ETH Zurich, Switzerland
* Copyright 2019-2020 PX4 Development Team. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <tinyxml.h>
#include <typeinfo>
#include <Eigen/Dense>
#include <gazebo/gazebo.hh>
#include <ignition/math.hh>
#include <gazebo/physics/physics.hh>
namespace gazebo {
/**
* \brief Obtains a parameter from sdf.
* \param[in] sdf Pointer to the sdf object.
* \param[in] name Name of the parameter.
* \param[out] param Param Variable to write the parameter to.
* \param[in] default_value Default value, if the parameter not available.
* \param[in] verbose If true, gzerror if the parameter is not available.
*/
template<class T>
bool getSdfParam(sdf::ElementPtr sdf, const std::string& name, T& param, const T& default_value, const bool& verbose =
false) {
if (sdf->HasElement(name)) {
param = sdf->GetElement(name)->Get<T>();
return true;
}
else {
param = default_value;
if (verbose)
gzerr << "[rotors_gazebo_plugins] Please specify a value for parameter \"" << name << "\".\n";
}
return false;
}
template <typename T>
void model_param(const std::string& world_name, const std::string& model_name, const std::string& param, T& param_value)
{
TiXmlElement* e_param = nullptr;
TiXmlElement* e_param_tmp = nullptr;
std::string dbg_param;
TiXmlDocument doc(world_name + ".xml");
if (doc.LoadFile())
{
TiXmlHandle h_root(doc.RootElement());
TiXmlElement* e_model = h_root.FirstChild("model").Element();
for( ; e_model != nullptr; e_model=e_model->NextSiblingElement("model") )
{
const char* attr_name = e_model->Attribute("name");
if (attr_name)
{
//specific
if (model_name.compare(attr_name) == 0)
{
e_param_tmp = e_model->FirstChildElement(param);
if (e_param_tmp)
{
e_param = e_param_tmp;
dbg_param = "";
}
break;
}
}
else
{
//common
e_param = e_model->FirstChildElement(param);
dbg_param = "common ";
}
}
if (e_param)
{
std::istringstream iss(e_param->GetText());
iss >> param_value;
gzdbg << model_name << " model: " << dbg_param << "parameter " << param << " = " << param_value << " from " << doc.Value() << "\n";
}
}
}
/**
* \brief Get a math::Angle as an angle from [0, 360)
*/
inline double GetDegrees360(const ignition::math::Angle& angle) {
double degrees = angle.Degree();
while (degrees < 0.) degrees += 360.0;
while (degrees >= 360.0) degrees -= 360.0;
return degrees;
}
} // namespace gazebo
template <typename T>
class FirstOrderFilter {
/*
This class can be used to apply a first order filter on a signal.
It allows different acceleration and deceleration time constants.
Short reveiw of discrete time implementation of firest order system:
Laplace:
X(s)/U(s) = 1/(tau*s + 1)
continous time system:
dx(t) = (-1/tau)*x(t) + (1/tau)*u(t)
discretized system (ZoH):
x(k+1) = exp(samplingTime*(-1/tau))*x(k) + (1 - exp(samplingTime*(-1/tau))) * u(k)
*/
public:
FirstOrderFilter(double timeConstantUp, double timeConstantDown, T initialState):
timeConstantUp_(timeConstantUp),
timeConstantDown_(timeConstantDown),
previousState_(initialState) {}
T updateFilter(T inputState, double samplingTime) {
/*
This method will apply a first order filter on the inputState.
*/
T outputState;
if(inputState > previousState_){
// Calcuate the outputState if accelerating.
double alphaUp = exp(- samplingTime / timeConstantUp_);
// x(k+1) = Ad*x(k) + Bd*u(k)
outputState = alphaUp * previousState_ + (1 - alphaUp) * inputState;
}else{
// Calculate the outputState if decelerating.
double alphaDown = exp(- samplingTime / timeConstantDown_);
outputState = alphaDown * previousState_ + (1 - alphaDown) * inputState;
}
previousState_ = outputState;
return outputState;
}
~FirstOrderFilter() {}
protected:
double timeConstantUp_;
double timeConstantDown_;
T previousState_;
};
/// Returns scalar value constrained by (min_val, max_val)
template<typename Scalar>
static inline constexpr const Scalar &constrain(const Scalar &val, const Scalar &min_val, const Scalar &max_val) {
return (val < min_val) ? min_val : ((val > max_val) ? max_val : val);
}
/// Computes a quaternion from the 3-element small angle approximation theta.
template<class Derived>
Eigen::Quaternion<typename Derived::Scalar> QuaternionFromSmallAngle(const Eigen::MatrixBase<Derived> & theta) {
typedef typename Derived::Scalar Scalar;
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived);
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3);
const Scalar q_squared = theta.squaredNorm() / 4.0;
if (q_squared < 1) {
return Eigen::Quaternion<Scalar>(sqrt(1 - q_squared), theta[0] * 0.5, theta[1] * 0.5, theta[2] * 0.5);
}
else {
const Scalar w = 1.0 / sqrt(1 + q_squared);
const Scalar f = w * 0.5;
return Eigen::Quaternion<Scalar>(w, theta[0] * f, theta[1] * f, theta[2] * f);
}
}
template<class In, class Out>
void copyPosition(const In& in, Out* out) {
out->x = in.x;
out->y = in.y;
out->z = in.z;
}
#if GAZEBO_MAJOR_VERSION < 9
inline ignition::math::Vector3d ignitionFromGazeboMath(const gazebo::math::Vector3 &vec_gz) {
return ignition::math::Vector3d(vec_gz.x, vec_gz.y, vec_gz.z);
}
inline ignition::math::Pose3d ignitionFromGazeboMath(const gazebo::math::Pose &pose_gz) {
return ignition::math::Pose3d(pose_gz.pos.x, pose_gz.pos.y, pose_gz.pos.z,
pose_gz.rot.w, pose_gz.rot.x, pose_gz.rot.y, pose_gz.rot.z);
}
#endif
/**
* @note Frames of reference:
* g - gazebo (ENU), east, north, up
* r - rotors imu frame (FLU), forward, left, up
* b - px4 (FRD) forward, right down
* n - px4 (NED) north, east, down
*/
/**
* @brief Quaternion for rotation between ENU and NED frames
*
* NED to ENU: +PI/2 rotation about Z (Down) followed by a +PI rotation around X (old North/new East)
* ENU to NED: +PI/2 rotation about Z (Up) followed by a +PI rotation about X (old East/new North)
* This rotation is symmetric, so q_ENU_to_NED == q_NED_to_ENU.
*/
static const auto q_ENU_to_NED = ignition::math::Quaterniond(0, 0.70711, 0.70711, 0);
/**
* @brief Quaternion for rotation between body FLU and body FRD frames
*
* +PI rotation around X (Forward) axis rotates from Forward, Right, Down (aircraft)
* to Forward, Left, Up (base_link) frames and vice-versa.
* This rotation is symmetric, so q_FLU_to_FRD == q_FRD_to_FLU.
*/
static const auto q_FLU_to_FRD = ignition::math::Quaterniond(0, 1, 0, 0);
// sensor X-axis unit vector in `base_link` frame
static const ignition::math::Vector3d kDownwardRotation = ignition::math::Vector3d(0, 0, -1);
static const ignition::math::Vector3d kUpwardRotation = ignition::math::Vector3d(0, 0, 1);
static const ignition::math::Vector3d kBackwardRotation = ignition::math::Vector3d(-1, 0, 0);
static const ignition::math::Vector3d kForwardRotation = ignition::math::Vector3d(1, 0, 0);
static const ignition::math::Vector3d kLeftRotation = ignition::math::Vector3d(0, 1, 0);
static const ignition::math::Vector3d kRightRotation = ignition::math::Vector3d(0, -1, 0);
// Zurich Irchel Park
static constexpr const double kDefaultHomeLatitude = 47.397742 * M_PI / 180.0; // rad
static constexpr const double kDefaultHomeLongitude = 8.545594 * M_PI / 180.0; // rad
static constexpr const double kDefaultHomeAltitude = 488.0; // meters
// Earth radius
static constexpr const double earth_radius = 6353000.0; // meters
/**
* @brief Get latitude and longitude coordinates from local position
* @param[in] pos position in the local frame
* @return std::pair of Latitude and Longitude
*/
inline std::pair<double, double> reproject(ignition::math::Vector3d& pos,
double& lat_home,
double& lon_home,
double& alt_home)
{
// reproject local position to gps coordinates
const double x_rad = pos.Y() / earth_radius; // north
const double y_rad = pos.X() / earth_radius; // east
const double c = sqrt(x_rad * x_rad + y_rad * y_rad);
const double sin_c = sin(c);
const double cos_c = cos(c);
double lat_rad, lon_rad;
if (c != 0.0) {
lat_rad = asin(cos_c * sin(lat_home) + (x_rad * sin_c * cos(lat_home)) / c);
lon_rad = (lon_home + atan2(y_rad * sin_c, c * cos(lat_home) * cos_c - x_rad * sin(lat_home) * sin_c));
} else {
lat_rad = lat_home;
lon_rad = lon_home;
}
return std::make_pair (lat_rad, lon_rad);
}
/**
* @brief Check if the world spherical coordinates are set and set them
* @param[in] world ptr to the world
* @return true if they exist, false otherwise
*/
inline const bool checkWorldHomePosition(gazebo::physics::WorldPtr& world,
double& world_latitude,
double& world_longitude,
double& world_altitude)
{
#if GAZEBO_MAJOR_VERSION >= 9
gazebo::common::SphericalCoordinatesPtr spherical_coords = world->SphericalCoords();
#else
gazebo::common::SphericalCoordinatesPtr spherical_coords = world->GetSphericalCoordinates();
#endif
if (!spherical_coords) {
return false;
}
world_latitude = spherical_coords->LatitudeReference().Radian();
world_longitude = spherical_coords->LongitudeReference().Radian();
world_altitude = spherical_coords->GetElevationReference();
// This logic is required given that the spherical coordinates reference call
// return 0 if the spherical coordnates are not defined in the world file
return (world_latitude && world_latitude && world_latitude) ? true : false;
}
template <typename T>
inline T degrees(T radians)
{
return radians * static_cast<T>(180.0) / static_cast<T>(M_PI);
}
template <typename T>
inline T radians(T degrees)
{
return radians / static_cast<T>(180.0) * static_cast<T>(M_PI);
}
#endif // SITL_GAZEBO_COMMON_H_