px4flow.cpp 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/****************************************************************************
 *
 *   Copyright (C) 2013 PX4 Development Team. All rights reserved.
 *   Author: Petri Tanskanen <tpetri@inf.ethz.ch>
 *			     Lorenz Meier <lm@inf.ethz.ch>
 *			     Samuel Zihlmann <samuezih@ee.ethz.ch>
 *
 *   Modified: Christoph Tobler <christoph@px4.io>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <math.h>

#include "px4flow.hpp"


#define TILE_SIZE	8										// x & y tile size
#define NUM_BLOCKS	5 // x & y number of tiles to check


PX4Flow::PX4Flow(uint32_t image_width_, uint32_t search_size_,
		 uint32_t flow_feature_threshold_, uint32_t flow_value_threshold_) :
	image_width(image_width_),
	search_size(search_size_),
	flow_feature_threshold(flow_feature_threshold_),
	flow_value_threshold(flow_value_threshold_)
{

}

uint32_t PX4Flow::__USAD8(uint32_t val1, uint32_t val2)
{
	uint32_t res = 0;
	uint8_t *val1_bytes = (uint8_t *)(&val1);
	uint8_t *val2_bytes = (uint8_t *)(&val2);

	for (int i = 0; i < 4; i++) {
		int16_t v1 = val1_bytes[i];
		int16_t v2 = val2_bytes[i];
		res += (uint32_t)(abs(v1 - v2));
	}

	return res;
}

uint32_t PX4Flow::__USADA8(uint32_t val1, uint32_t val2, uint32_t val3)
{
	uint32_t res = val3;
	uint8_t *val1_bytes = (uint8_t *)(&val1);
	uint8_t *val2_bytes = (uint8_t *)(&val2);

	for (int i = 0; i < 4; i++) {
		int16_t v1 = val1_bytes[i];
		int16_t v2 = val2_bytes[i];
		res += (uint32_t)(abs(v1 - v2));
	}

	return res;
}

uint32_t PX4Flow::__UHADD8(uint32_t val1, uint32_t val2)
{
	uint32_t res = 0;
	uint8_t *res_bytes = (uint8_t *)(&res);
	uint8_t *val1_bytes = (uint8_t *)(&val1);
	uint8_t *val2_bytes = (uint8_t *)(&val2);

	for (int i = 0; i < 4; i++) {
		res_bytes[i] = (val1_bytes[i] + val2_bytes[i]) >> 1;
	}

	return res;
}

/**
 * @brief Compute the average pixel gradient of all horizontal and vertical steps
 *
 * TODO compute_diff is not appropriate for low-light mode images
 *
 * @param image ...
 * @param offX x coordinate of upper left corner of 8x8 pattern in image
 * @param offY y coordinate of upper left corner of 8x8 pattern in image
 */
uint32_t PX4Flow::compute_diff(uint8_t *image, uint16_t offX, uint16_t offY, uint16_t row_size)
{
	/* calculate position in image buffer */
	uint16_t off = (offY + 2) * row_size + (offX + 2); // we calc only the 4x4 pattern
	uint32_t acc;

	/* calc row diff */
	acc = __USAD8(*((uint32_t *) &image[off + 0 + 0 * row_size]), *((uint32_t *) &image[off + 0 + 1 * row_size]));
	acc = __USADA8(*((uint32_t *) &image[off + 0 + 1 * row_size]), *((uint32_t *) &image[off + 0 + 2 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image[off + 0 + 2 * row_size]), *((uint32_t *) &image[off + 0 + 3 * row_size]), acc);

	/* we need to get columns */
	uint32_t col1 = (image[off + 0 + 0 * row_size] << 24) | image[off + 0 + 1 * row_size] << 16 | image[off + 0 + 2 *
			row_size] << 8 | image[off + 0 + 3 * row_size];
	uint32_t col2 = (image[off + 1 + 0 * row_size] << 24) | image[off + 1 + 1 * row_size] << 16 | image[off + 1 + 2 *
			row_size] << 8 | image[off + 1 + 3 * row_size];
	uint32_t col3 = (image[off + 2 + 0 * row_size] << 24) | image[off + 2 + 1 * row_size] << 16 | image[off + 2 + 2 *
			row_size] << 8 | image[off + 2 + 3 * row_size];
	uint32_t col4 = (image[off + 3 + 0 * row_size] << 24) | image[off + 3 + 1 * row_size] << 16 | image[off + 3 + 2 *
			row_size] << 8 | image[off + 3 + 3 * row_size];

	/* calc column diff */
	acc = __USADA8(col1, col2, acc);
	acc = __USADA8(col2, col3, acc);
	acc = __USADA8(col3, col4, acc);

	return acc;

}

/**
 * @brief Compute SAD distances of subpixel shift of two 8x8 pixel patterns.
 *
 * @param image1 ...
 * @param image2 ...
 * @param off1X x coordinate of upper left corner of pattern in image1
 * @param off1Y y coordinate of upper left corner of pattern in image1
 * @param off2X x coordinate of upper left corner of pattern in image2
 * @param off2Y y coordinate of upper left corner of pattern in image2
 * @param acc array to store SAD distances for shift in every direction
 */
uint32_t PX4Flow::compute_subpixel(uint8_t *image1, uint8_t *image2, uint16_t off1X, uint16_t off1Y,
				   uint16_t off2X, uint16_t off2Y, uint32_t *acc, uint16_t row_size)
{
	/* calculate position in image buffer */
	uint16_t off1 = off1Y * row_size + off1X; // image1
	uint16_t off2 = off2Y * row_size + off2X; // image2

	uint32_t s0, s1, s2, s3, s4, s5, s6, s7, t1, t3, t5, t7;

	for (uint16_t i = 0; i < 8; i++) {
		acc[i] = 0;
	}


	/*
	 * calculate for each pixel in the 8x8 field with upper left corner (off1X / off1Y)
	 * every iteration is one line of the 8x8 field.
	 *
	 *  + - + - + - + - + - + - + - + - +
	 *  |   |   |   |   |   |   |   |   |
	 *  + - + - + - + - + - + - + - + - +
	 *
	 *
	 */

	for (uint16_t i = 0; i < 8; i++) {
		/*
		 * first column of 4 pixels:
		 *
		 *  + - + - + - + - + - + - + - + - +
		 *  | x | x | x | x |   |   |   |   |
		 *  + - + - + - + - + - + - + - + - +
		 *
		 * the 8 s values are from following positions for each pixel (X):
		 *  + - + - + - +
		 *  +   5   7   +
		 *  + - + 6 + - +
		 *  +   4 X 0   +
		 *  + - + 2 + - +
		 *  +   3   1   +
		 *  + - + - + - +
		 *
		 *  variables (s1, ...) contains all 4 results (32bit -> 4 * 8bit values)
		 *
		 */

		/* compute average of two pixel values */
		s0 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 1 + (i + 0) * row_size])));
		s1 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i + 1) * row_size]),
			       *((uint32_t *) &image2[off2 + 1 + (i + 1) * row_size])));
		s2 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 0 + (i + 1) * row_size])));
		s3 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i + 1) * row_size]),
			       *((uint32_t *) &image2[off2 - 1 + (i + 1) * row_size])));
		s4 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 - 1 + (i + 0) * row_size])));
		s5 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i - 1) * row_size]),
			       *((uint32_t *) &image2[off2 - 1 + (i - 1) * row_size])));
		s6 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 0 + (i - 1) * row_size])));
		s7 = (__UHADD8(*((uint32_t *) &image2[off2 +  0 + (i - 1) * row_size]),
			       *((uint32_t *) &image2[off2 + 1 + (i - 1) * row_size])));

		/* these 4 t values are from the corners around the center pixel */
		t1 = (__UHADD8(s0, s1));
		t3 = (__UHADD8(s3, s4));
		t5 = (__UHADD8(s4, s5));
		t7 = (__UHADD8(s7, s0));

		/*
		 * finally we got all 8 subpixels (s0, t1, s2, t3, s4, t5, s6, t7):
		 *  + - + - + - +
		 *  |   |   |   |
		 *  + - 5 6 7 - +
		 *  |   4 X 0   |
		 *  + - 3 2 1 - +
		 *  |   |   |   |
		 *  + - + - + - +
		 */

		/* fill accumulation vector */
		acc[0] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), s0, acc[0]);
		acc[1] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), t1, acc[1]);
		acc[2] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), s2, acc[2]);
		acc[3] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), t3, acc[3]);
		acc[4] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), s4, acc[4]);
		acc[5] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), t5, acc[5]);
		acc[6] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), s6, acc[6]);
		acc[7] = __USADA8((*((uint32_t *) &image1[off1 + 0 + i * row_size])), t7, acc[7]);

		/*
		 * same for second column of 4 pixels:
		 *
		 *  + - + - + - + - + - + - + - + - +
		 *  |   |   |   |   | x | x | x | x |
		 *  + - + - + - + - + - + - + - + - +
		 *
		 */

		s0 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 5 + (i + 0) * row_size])));
		s1 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i + 1) * row_size]),
			       *((uint32_t *) &image2[off2 + 5 + (i + 1) * row_size])));
		s2 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 4 + (i + 1) * row_size])));
		s3 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i + 1) * row_size]),
			       *((uint32_t *) &image2[off2 + 3 + (i + 1) * row_size])));
		s4 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 3 + (i + 0) * row_size])));
		s5 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i - 1) * row_size]),
			       *((uint32_t *) &image2[off2 + 3 + (i - 1) * row_size])));
		s6 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i + 0) * row_size]),
			       *((uint32_t *) &image2[off2 + 4 + (i - 1) * row_size])));
		s7 = (__UHADD8(*((uint32_t *) &image2[off2 + 4 + (i - 1) * row_size]),
			       *((uint32_t *) &image2[off2 + 5 + (i - 1) * row_size])));

		t1 = (__UHADD8(s0, s1));
		t3 = (__UHADD8(s3, s4));
		t5 = (__UHADD8(s4, s5));
		t7 = (__UHADD8(s7, s0));

		acc[0] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), s0, acc[0]);
		acc[1] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), t1, acc[1]);
		acc[2] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), s2, acc[2]);
		acc[3] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), t3, acc[3]);
		acc[4] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), s4, acc[4]);
		acc[5] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), t5, acc[5]);
		acc[6] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), s6, acc[6]);
		acc[7] = __USADA8((*((uint32_t *) &image1[off1 + 4 + i * row_size])), t7, acc[7]);
	}

	return 0;
}

/**
 * @brief Compute SAD of two 8x8 pixel windows.
 *
 * @param image1 ...
 * @param image2 ...
 * @param off1X x coordinate of upper left corner of pattern in image1
 * @param off1Y y coordinate of upper left corner of pattern in image1
 * @param off2X x coordinate of upper left corner of pattern in image2
 * @param off2Y y coordinate of upper left corner of pattern in image2
 */
uint32_t PX4Flow::compute_sad_8x8(uint8_t *image1, uint8_t *image2, uint16_t off1X, uint16_t off1Y,
				  uint16_t off2X, uint16_t off2Y, uint16_t row_size)
{
	/* calculate position in image buffer */
	uint16_t off1 = off1Y * row_size + off1X; // image1
	uint16_t off2 = off2Y * row_size + off2X; // image2

	uint32_t acc;
	acc = __USAD8(*((uint32_t *) &image1[off1 + 0 + 0 * row_size]), *((uint32_t *) &image2[off2 + 0 + 0 * row_size]));
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 0 * row_size]), *((uint32_t *) &image2[off2 + 4 + 0 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 1 * row_size]), *((uint32_t *) &image2[off2 + 0 + 1 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 1 * row_size]), *((uint32_t *) &image2[off2 + 4 + 1 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 2 * row_size]), *((uint32_t *) &image2[off2 + 0 + 2 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 2 * row_size]), *((uint32_t *) &image2[off2 + 4 + 2 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 3 * row_size]), *((uint32_t *) &image2[off2 + 0 + 3 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 3 * row_size]), *((uint32_t *) &image2[off2 + 4 + 3 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 4 * row_size]), *((uint32_t *) &image2[off2 + 0 + 4 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 4 * row_size]), *((uint32_t *) &image2[off2 + 4 + 4 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 5 * row_size]), *((uint32_t *) &image2[off2 + 0 + 5 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 5 * row_size]), *((uint32_t *) &image2[off2 + 4 + 5 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 6 * row_size]), *((uint32_t *) &image2[off2 + 0 + 6 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 6 * row_size]), *((uint32_t *) &image2[off2 + 4 + 6 * row_size]), acc);

	acc = __USADA8(*((uint32_t *) &image1[off1 + 0 + 7 * row_size]), *((uint32_t *) &image2[off2 + 0 + 7 * row_size]), acc);
	acc = __USADA8(*((uint32_t *) &image1[off1 + 4 + 7 * row_size]), *((uint32_t *) &image2[off2 + 4 + 7 * row_size]), acc);

	return acc;
}

/**
 * @brief Computes pixel flow from image1 to image2
 *
 * Searches the corresponding position in the new image (image2) of max. 64 pixels from the old image (image1)
 * and calculates the average offset of all.
 *
 * @param image1 previous image buffer
 * @param image2 current image buffer (new)
 * @param x_rate gyro x rate
 * @param y_rate gyro y rate
 * @param z_rate gyro z rate
 *
 * @return quality of flow calculation
 */
uint8_t PX4Flow::compute_flow(uint8_t *image1, uint8_t *image2, float x_rate, float y_rate,
			      float z_rate, float *pixel_flow_x, float *pixel_flow_y)
{

	/* constants */
	const int16_t winmin = -search_size;
	const int16_t winmax = search_size;
	const uint16_t hist_size = 2 * (winmax - winmin + 1) + 1;

	/* variables */
	uint16_t pixLo = search_size + 1;
	uint16_t pixHi = image_width - (search_size + 1) - TILE_SIZE;
	uint16_t pixStep = (pixHi - pixLo) / NUM_BLOCKS + 1;
	uint16_t i, j;
	uint32_t acc[8]; // subpixels
	uint16_t histx[hist_size]; // counter for x shift
	uint16_t histy[hist_size]; // counter for y shift
	int8_t  dirsx[64]; // shift directions in x
	int8_t  dirsy[64]; // shift directions in y
	uint8_t  subdirs[64]; // shift directions of best subpixels
	float meanflowx = 0.0f;
	float meanflowy = 0.0f;
	uint16_t meancount = 0;
	float histflowx = 0.0f;
	float histflowy = 0.0f;

	/* initialize with 0 */
	for (j = 0; j < hist_size; j++) { histx[j] = 0; histy[j] = 0; }

	/* iterate over all patterns
	 */
	for (j = pixLo; j < pixHi; j += pixStep) {
		for (i = pixLo; i < pixHi; i += pixStep) {
			/* test pixel if it is suitable for flow tracking */
			uint32_t diff = compute_diff(image1, i, j, image_width);

			if (diff < flow_feature_threshold) {
				continue;
			}

			uint32_t dist = 0xFFFFFFFF; // set initial distance to "infinity"
			int8_t sumx = 0;
			int8_t sumy = 0;
			int8_t ii, jj;

			for (jj = winmin; jj <= winmax; jj++) {

				for (ii = winmin; ii <= winmax; ii++) {
					uint32_t temp_dist = compute_sad_8x8(image1, image2, i, j, i + ii, j + jj, image_width);

					if (temp_dist < dist) {
						sumx = ii;
						sumy = jj;
						dist = temp_dist;
					}
				}
			}

			/* acceptance SAD distance threshhold */
			if (dist < flow_value_threshold) {
				meanflowx += (float) sumx;
				meanflowy += (float) sumy;

				compute_subpixel(image1, image2, i, j, i + sumx, j + sumy, acc, image_width);
				uint32_t mindist = dist; // best SAD until now
				uint8_t mindir = 8; // direction 8 for no direction

				for (uint8_t k = 0; k < 8; k++) {
					if (acc[k] < mindist) {
						// SAD becomes better in direction k
						mindist = acc[k];
						mindir = k;
					}
				}

				dirsx[meancount] = sumx;
				dirsy[meancount] = sumy;
				subdirs[meancount] = mindir;
				meancount++;

				/* feed histogram filter*/
				uint8_t hist_index_x = 2 * sumx + (winmax - winmin + 1);

				if (subdirs[i] == 0 || subdirs[i] == 1 || subdirs[i] == 7) { hist_index_x += 1; }

				if (subdirs[i] == 3 || subdirs[i] == 4 || subdirs[i] == 5) { hist_index_x += -1; }

				uint8_t hist_index_y = 2 * sumy + (winmax - winmin + 1);

				if (subdirs[i] == 5 || subdirs[i] == 6 || subdirs[i] == 7) { hist_index_y += -1; }

				if (subdirs[i] == 1 || subdirs[i] == 2 || subdirs[i] == 3) { hist_index_y += 1; }

				histx[hist_index_x]++;
				histy[hist_index_y]++;

			}
		}
	}

	/* evaluate flow calculation */
	if (meancount > 10) {
		meanflowx /= meancount;
		meanflowy /= meancount;

		// int16_t maxpositionx = 0;
		// int16_t maxpositiony = 0;
		// uint16_t maxvaluex = 0;
		// uint16_t maxvaluey = 0;
		//
		// /* position of maximal histogram peek */
		// for (j = 0; j < hist_size; j++) {
		// 	if (histx[j] > maxvaluex) {
		// 		maxvaluex = histx[j];
		// 		maxpositionx = j;
		// 	}
		//
		// 	if (histy[j] > maxvaluey) {
		// 		maxvaluey = histy[j];
		// 		maxpositiony = j;
		// 	}
		// }

		/* check if there is a peak value in histogram */
		if (1) { //(histx[maxpositionx] > meancount / 6 && histy[maxpositiony] > meancount / 6)

			/* use average of accepted flow values */
			uint32_t meancount_x = 0;
			uint32_t meancount_y = 0;

			for (uint8_t h = 0; h < meancount; h++) {
				float subdirx = 0.0f;

				if (subdirs[h] == 0 || subdirs[h] == 1 || subdirs[h] == 7) { subdirx = 0.5f; }

				if (subdirs[h] == 3 || subdirs[h] == 4 || subdirs[h] == 5) { subdirx = -0.5f; }

				histflowx += (float)dirsx[h] + subdirx;
				meancount_x++;

				float subdiry = 0.0f;

				if (subdirs[h] == 5 || subdirs[h] == 6 || subdirs[h] == 7) { subdiry = -0.5f; }

				if (subdirs[h] == 1 || subdirs[h] == 2 || subdirs[h] == 3) { subdiry = 0.5f; }

				histflowy += (float)dirsy[h] + subdiry;
				meancount_y++;
			}

			histflowx /= meancount_x;
			histflowy /= meancount_y;

			/* without gyro compensation */
			*pixel_flow_x = histflowx;
			*pixel_flow_y = histflowy;

		}

		/* no peak value in histogram */
		else {
			*pixel_flow_x = 0.0f;
			*pixel_flow_y = 0.0f;
			return 0;
		}
	}

	/* no peak value in histogram */
	else {
		*pixel_flow_x = 0.0f;
		*pixel_flow_y = 0.0f;
		return 0;
	}

	/* calc quality */
	uint8_t qual = (uint8_t)(meancount * 255 / (NUM_BLOCKS * NUM_BLOCKS));

	return qual;
}