test_mathlib.cpp
12.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/****************************************************************************
*
* Copyright (C) 2013-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file test_mathlib.cpp
* Tests for the PX4 math library.
*/
#include <unit_test.h>
#include <errno.h>
#include <fcntl.h>
#include <float.h>
#include <math.h>
#include <px4_platform_common/px4_config.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <px4_platform_common/log.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <mathlib/mathlib.h>
#include <systemlib/err.h>
#include <drivers/drv_hrt.h>
#include <matrix/math.hpp>
#include "tests_main.h"
class MathlibTest : public UnitTest
{
public:
virtual bool run_tests();
private:
bool testVector2();
bool testVector3();
bool testVector10();
bool testMatrix3x3();
bool testMatrix10x10();
bool testMatrixNonsymmetric();
bool testRotationMatrixQuaternion();
bool testQuaternionfrom_dcm();
bool testQuaternionfrom_euler();
bool testQuaternionRotate();
bool testFinite();
};
#define TEST_OP(_title, _op) { unsigned int n = 30000; hrt_abstime t0, t1; t0 = hrt_absolute_time(); for (unsigned int j = 0; j < n; j++) { _op; }; t1 = hrt_absolute_time(); PX4_INFO(_title ": %.6fus", (double)(t1 - t0) / n); }
using namespace math;
bool MathlibTest::testVector2()
{
{
matrix::Vector2f v;
matrix::Vector2f v1(1.0f, 2.0f);
matrix::Vector2f v2(1.0f, -1.0f);
float data[2] = {1.0f, 2.0f};
TEST_OP("Constructor matrix::Vector2f()", matrix::Vector2f v3);
TEST_OP("Constructor matrix::Vector2f(matrix::Vector2f)", matrix::Vector2f v3(v1); ut_assert_true(v3 == v1); v3.zero());
TEST_OP("Constructor matrix::Vector2f(float[])", matrix::Vector2f v3(data));
TEST_OP("Constructor matrix::Vector2f(float, float)", matrix::Vector2f v3(1.0f, 2.0f));
TEST_OP("matrix::Vector2f = matrix::Vector2f", v = v1);
TEST_OP("matrix::Vector2f + matrix::Vector2f", v + v1);
TEST_OP("matrix::Vector2f - matrix::Vector2f", v - v1);
TEST_OP("matrix::Vector2f += matrix::Vector2f", v += v1);
TEST_OP("matrix::Vector2f -= matrix::Vector2f", v -= v1);
TEST_OP("matrix::Vector2f * matrix::Vector2f", v * v1);
TEST_OP("matrix::Vector2f %% matrix::Vector2f", v1 % v2);
}
return true;
}
bool MathlibTest::testVector3()
{
{
matrix::Vector3f v;
matrix::Vector3f v1(1.0f, 2.0f, 0.0f);
matrix::Vector3f v2(1.0f, -1.0f, 2.0f);
float data[3] = {1.0f, 2.0f, 3.0f};
TEST_OP("Constructor matrix::Vector3f()", matrix::Vector3f v3);
TEST_OP("Constructor matrix::Vector3f(matrix::Vector3f)", matrix::Vector3f v3(v1); ut_assert_true(v3 == v1); v3.zero());
TEST_OP("Constructor matrix::Vector3f(float[])", matrix::Vector3f v3(data));
TEST_OP("Constructor matrix::Vector3f(float, float, float)", matrix::Vector3f v3(1.0f, 2.0f, 3.0f));
TEST_OP("matrix::Vector3f = matrix::Vector3f", v = v1);
TEST_OP("matrix::Vector3f + matrix::Vector3f", v + v1);
TEST_OP("matrix::Vector3f - matrix::Vector3f", v - v1);
TEST_OP("matrix::Vector3f += matrix::Vector3f", v += v1);
TEST_OP("matrix::Vector3f -= matrix::Vector3f", v -= v1);
TEST_OP("matrix::Vector3f * float", v1 * 2.0f);
TEST_OP("matrix::Vector3f / float", v1 / 2.0f);
TEST_OP("matrix::Vector3f *= float", v1 *= 2.0f);
TEST_OP("matrix::Vector3f /= float", v1 /= 2.0f);
TEST_OP("matrix::Vector3f * matrix::Vector3f", v * v1);
TEST_OP("matrix::Vector3f %% matrix::Vector3f", v1 % v2);
TEST_OP("matrix::Vector3f length", v1.length());
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
// Need pragma here instead of moving variable out of TEST_OP and just reference because
// TEST_OP measures performance of vector operations.
TEST_OP("matrix::Vector3f element read", volatile float a = v1(0));
#pragma GCC diagnostic pop
TEST_OP("matrix::Vector3f element write", v1(0) = 1.0f);
}
return true;
}
bool MathlibTest::testMatrix3x3()
{
{
matrix::Matrix3f m1;
m1.identity();
matrix::Matrix3f m2;
m2.identity();
matrix::Vector3f v1(1.0f, 2.0f, 0.0f);
TEST_OP("matrix::Matrix3f * matrix::Vector3f", m1 * v1);
TEST_OP("matrix::Matrix3f + matrix::Matrix3f", m1 + m2);
TEST_OP("matrix::Matrix3f * matrix::Matrix3f", m1 * m2);
}
return true;
}
bool MathlibTest::testMatrixNonsymmetric()
{
int rc = true;
{
//PX4_INFO("Nonsymmetric matrix operations test");
// test nonsymmetric +, -, +=, -=
float data1[2][3] = {{1, 2, 3}, {4, 5, 6}};
float data2[2][3] = {{2, 4, 6}, {8, 10, 12}};
float data3[2][3] = {{3, 6, 9}, {12, 15, 18}};
matrix::Matrix<float, 2, 3> m1(data1);
matrix::Matrix<float, 2, 3> m2(data2);
matrix::Matrix<float, 2, 3> m3(data3);
if (m1 + m2 != m3) {
PX4_ERR("matrix::Matrix<float, 2, 3> + matrix::Matrix<float, 2, 3> failed!");
(m1 + m2).print();
printf("!=\n");
m3.print();
rc = false;
}
ut_assert("m1 + m2 == m3", m1 + m2 == m3);
if (m3 - m2 != m1) {
PX4_ERR("matrix::Matrix<float, 2, 3> - matrix::Matrix<float, 2, 3> failed!");
(m3 - m2).print();
printf("!=\n");
m1.print();
rc = false;
}
ut_assert("m3 - m2 == m1", m3 - m2 == m1);
m1 += m2;
if (m1 != m3) {
PX4_ERR("matrix::Matrix<float, 2, 3> += matrix::Matrix<float, 2, 3> failed!");
m1.print();
printf("!=\n");
m3.print();
rc = false;
}
ut_assert("m1 == m3", m1 == m3);
m1 -= m2;
matrix::Matrix<float, 2, 3> m1_orig(data1);
if (m1 != m1_orig) {
PX4_ERR("matrix::Matrix<float, 2, 3> -= matrix::Matrix<float, 2, 3> failed!");
m1.print();
printf("!=\n");
m1_orig.print();
rc = false;
}
ut_assert("m1 == m1_orig", m1 == m1_orig);
}
return rc;
}
bool MathlibTest::testRotationMatrixQuaternion()
{
// test conversion rotation matrix to quaternion and back
matrix::Dcmf R_orig;
matrix::Dcmf R;
matrix::Quatf q;
float diff = 0.2f;
float tol = 0.00001f;
//PX4_INFO("Quaternion transformation methods test.");
for (float roll = -M_PI_F; roll <= M_PI_F; roll += diff) {
for (float pitch = -M_PI_2_F; pitch <= M_PI_2_F; pitch += diff) {
for (float yaw = -M_PI_F; yaw <= M_PI_F; yaw += diff) {
R_orig = matrix::Eulerf(roll, pitch, yaw);
q = R_orig;
R = q;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
ut_assert("matrix::Quatf method 'from_dcm' or 'to_dcm' outside tolerance!", fabsf(R_orig(i, j) - R(i, j)) < tol);
}
}
}
}
}
return true;
}
bool MathlibTest::testQuaternionfrom_dcm()
{
// test against some known values
float tol = 0.0001f;
matrix::Quatf q_true = {1.0f, 0.0f, 0.0f, 0.0f};
matrix::Matrix3f R_orig;
R_orig.identity();
matrix::Quatf q(R_orig);
for (unsigned i = 0; i < 4; i++) {
ut_assert("matrix::Quatf method 'from_dcm()' outside tolerance!", fabsf(q(i) - q_true(i)) < tol);
}
return true;
}
bool MathlibTest::testQuaternionfrom_euler()
{
float tol = 0.0001f;
matrix::Quatf q_true = {1.0f, 0.0f, 0.0f, 0.0f};
matrix::Matrix3f R_orig;
R_orig.identity();
matrix::Quatf q(R_orig);
q_true = matrix::Eulerf(0.3f, 0.2f, 0.1f);
q = {0.9833f, 0.1436f, 0.1060f, 0.0343f};
for (unsigned i = 0; i < 4; i++) {
ut_assert("matrix::Quatf method 'from_euler()' outside tolerance!", fabsf(q(i) - q_true(i)) < tol);
}
q_true = matrix::Eulerf(-1.5f, -0.2f, 0.5f);
q = {0.7222f, -0.6391f, -0.2386f, 0.1142f};
for (unsigned i = 0; i < 4; i++) {
ut_assert("matrix::Quatf method 'from_euler()' outside tolerance!", fabsf(q(i) - q_true(i)) < tol);
}
q_true = matrix::Eulerf(M_PI_2_F, -M_PI_2_F, -M_PI_F / 3);
q = {0.6830f, 0.1830f, -0.6830f, 0.1830f};
for (unsigned i = 0; i < 4; i++) {
ut_assert("matrix::Quatf method 'from_euler()' outside tolerance!", fabsf(q(i) - q_true(i)) < tol);
}
return true;
}
bool MathlibTest::testQuaternionRotate()
{
// test quaternion method "rotate" (rotate vector by quaternion)
matrix::Vector3f vector = {1.0f, 1.0f, 1.0f};
matrix::Vector3f vector_q;
matrix::Vector3f vector_r;
matrix::Quatf q;
matrix::Dcmf R;
float diff = 0.2f;
float tol = 0.00001f;
//PX4_INFO("matrix::Quatf vector rotation method test.");
for (float roll = -M_PI_F; roll <= M_PI_F; roll += diff) {
for (float pitch = -M_PI_2_F; pitch <= M_PI_2_F; pitch += diff) {
for (float yaw = -M_PI_F; yaw <= M_PI_F; yaw += diff) {
R = matrix::Eulerf(roll, pitch, yaw);
q = matrix::Eulerf(roll, pitch, yaw);
vector_r = R * vector;
vector_q = q.conjugate(vector);
for (int i = 0; i < 3; i++) {
ut_assert("matrix::Quatf method 'rotate' outside tolerance", fabsf(vector_r(i) - vector_q(i)) < tol);
}
}
}
}
// test some values calculated with matlab
tol = 0.0001f;
q = matrix::Eulerf(M_PI_2_F, 0.0f, 0.0f);
vector_q = q.conjugate(vector);
matrix::Vector3f vector_true = {1.00f, -1.00f, 1.00f};
for (unsigned i = 0; i < 3; i++) {
ut_assert("matrix::Quatf method 'rotate' outside tolerance", fabsf(vector_true(i) - vector_q(i)) < tol);
}
q = matrix::Eulerf(0.3f, 0.2f, 0.1f);
vector_q = q.conjugate(vector);
vector_true = {1.1566, 0.7792, 1.0273};
for (unsigned i = 0; i < 3; i++) {
ut_assert("matrix::Quatf method 'rotate' outside tolerance", fabsf(vector_true(i) - vector_q(i)) < tol);
}
q = matrix::Eulerf(-1.5f, -0.2f, 0.5f);
vector_q = q.conjugate(vector);
vector_true = {0.5095, 1.4956, -0.7096};
for (unsigned i = 0; i < 3; i++) {
ut_assert("matrix::Quatf method 'rotate' outside tolerance", fabsf(vector_true(i) - vector_q(i)) < tol);
}
q = matrix::Eulerf(M_PI_2_F, -M_PI_2_F, -M_PI_F / 3.0f);
vector_q = q.conjugate(vector);
vector_true = { -1.3660, 0.3660, 1.0000};
for (unsigned i = 0; i < 3; i++) {
ut_assert("matrix::Quatf method 'rotate' outside tolerance", fabsf(vector_true(i) - vector_q(i)) < tol);
}
return true;
}
bool MathlibTest::testFinite()
{
ut_assert("PX4_ISFINITE(0.0f)", PX4_ISFINITE(0.0f) == true);
ut_assert("PX4_ISFINITE(-0.0f)", PX4_ISFINITE(-0.0f) == true);
ut_assert("PX4_ISFINITE(1.0f)", PX4_ISFINITE(1.0f) == true);
ut_assert("PX4_ISFINITE(-1.0f)", PX4_ISFINITE(-1.0f) == true);
ut_assert("PX4_ISFINITE(NAN)", PX4_ISFINITE(NAN) == false);
ut_assert("PX4_ISFINITE(1/0)", PX4_ISFINITE(1.0f / 0.0f) == false);
ut_assert("PX4_ISFINITE(0/0)", PX4_ISFINITE(0.0f / 0.0f) == false);
ut_assert("PX4_ISFINITE(INFINITY)", PX4_ISFINITE(INFINITY) == false);
ut_assert("PX4_ISFINITE(NAN * INFINITY)", PX4_ISFINITE(NAN * INFINITY) == false);
ut_assert("PX4_ISFINITE(NAN * 1.0f)", PX4_ISFINITE(NAN * 1.0f) == false);
ut_assert("PX4_ISFINITE(INFINITY * 2.0f)", PX4_ISFINITE(INFINITY * 2.0f) == false);
return true;
}
bool MathlibTest::run_tests()
{
ut_run_test(testVector2);
ut_run_test(testVector3);
ut_run_test(testMatrix3x3);
ut_run_test(testMatrixNonsymmetric);
ut_run_test(testRotationMatrixQuaternion);
ut_run_test(testQuaternionfrom_dcm);
ut_run_test(testQuaternionfrom_euler);
ut_run_test(testQuaternionRotate);
ut_run_test(testFinite);
return (_tests_failed == 0);
}
ut_declare_test_c(test_mathlib, MathlibTest)