sih.cpp
15.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/****************************************************************************
*
* Copyright (c) 2019-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file sih.cpp
* Simulator in Hardware
*
* @author Romain Chiappinelli <romain.chiap@gmail.com>
*
* Coriolis g Corporation - January 2019
*/
#include "sih.hpp"
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/log.h>
#include <drivers/drv_pwm_output.h> // to get PWM flags
using namespace math;
using namespace matrix;
using namespace time_literals;
Sih::Sih() :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::rate_ctrl)
{
_px4_accel.set_temperature(T1_C);
_px4_gyro.set_temperature(T1_C);
_px4_mag.set_temperature(T1_C);
parameters_updated();
init_variables();
gps_no_fix();
const hrt_abstime task_start = hrt_absolute_time();
_last_run = task_start;
_gps_time = task_start;
_gt_time = task_start;
_dist_snsr_time = task_start;
}
Sih::~Sih()
{
perf_free(_loop_perf);
perf_free(_loop_interval_perf);
}
bool Sih::init()
{
int rate = _imu_gyro_ratemax.get();
// default to 250 Hz (4000 us interval)
if (rate <= 0) {
rate = 250;
}
// 200 - 2000 Hz
int interval_us = math::constrain(int(roundf(1e6f / rate)), 500, 5000);
ScheduleOnInterval(interval_us);
return true;
}
void Sih::Run()
{
perf_count(_loop_interval_perf);
// check for parameter updates
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
parameters_updated();
}
perf_begin(_loop_perf);
_now = hrt_absolute_time();
_dt = (_now - _last_run) * 1e-6f;
_last_run = _now;
read_motors();
generate_force_and_torques();
equations_of_motion();
reconstruct_sensors_signals();
// update IMU every iteration
_px4_accel.update(_now, _acc(0), _acc(1), _acc(2));
_px4_gyro.update(_now, _gyro(0), _gyro(1), _gyro(2));
// magnetometer published at 50 Hz
if (_now - _mag_time >= 20_ms
&& fabs(_mag_offset_x) < 10000
&& fabs(_mag_offset_y) < 10000
&& fabs(_mag_offset_z) < 10000) {
_mag_time = _now;
_px4_mag.update(_now, _mag(0), _mag(1), _mag(2));
}
// baro published at 20 Hz
if (_now - _baro_time >= 50_ms
&& fabs(_baro_offset_m) < 10000) {
_baro_time = _now;
_px4_baro.set_temperature(_baro_temp_c);
_px4_baro.update(_now, _baro_p_mBar);
}
// gps published at 20Hz
if (_now - _gps_time >= 50_ms) {
_gps_time = _now;
send_gps();
}
// distance sensor published at 50 Hz
if (_now - _dist_snsr_time >= 20_ms
&& fabs(_distance_snsr_override) < 10000) {
_dist_snsr_time = _now;
send_dist_snsr();
}
// send groundtruth message every 40 ms
if (_now - _gt_time >= 40_ms) {
_gt_time = _now;
publish_sih(); // publish _sih message for debug purpose
}
perf_end(_loop_perf);
}
// store the parameters in a more convenient form
void Sih::parameters_updated()
{
_T_MAX = _sih_t_max.get();
_Q_MAX = _sih_q_max.get();
_L_ROLL = _sih_l_roll.get();
_L_PITCH = _sih_l_pitch.get();
_KDV = _sih_kdv.get();
_KDW = _sih_kdw.get();
_H0 = _sih_h0.get();
_LAT0 = (double)_sih_lat0.get() * 1.0e-7;
_LON0 = (double)_sih_lon0.get() * 1.0e-7;
_COS_LAT0 = cosl((long double)radians(_LAT0));
_MASS = _sih_mass.get();
_W_I = Vector3f(0.0f, 0.0f, _MASS * CONSTANTS_ONE_G);
_I = diag(Vector3f(_sih_ixx.get(), _sih_iyy.get(), _sih_izz.get()));
_I(0, 1) = _I(1, 0) = _sih_ixy.get();
_I(0, 2) = _I(2, 0) = _sih_ixz.get();
_I(1, 2) = _I(2, 1) = _sih_iyz.get();
_Im1 = inv(_I);
_mu_I = Vector3f(_sih_mu_x.get(), _sih_mu_y.get(), _sih_mu_z.get());
_gps_used = _sih_gps_used.get();
_baro_offset_m = _sih_baro_offset.get();
_mag_offset_x = _sih_mag_offset_x.get();
_mag_offset_y = _sih_mag_offset_y.get();
_mag_offset_z = _sih_mag_offset_z.get();
_distance_snsr_min = _sih_distance_snsr_min.get();
_distance_snsr_max = _sih_distance_snsr_max.get();
_distance_snsr_override = _sih_distance_snsr_override.get();
_T_TAU = _sih_thrust_tau.get();
}
// initialization of the variables for the simulator
void Sih::init_variables()
{
srand(1234); // initialize the random seed once before calling generate_wgn()
_p_I = Vector3f(0.0f, 0.0f, 0.0f);
_v_I = Vector3f(0.0f, 0.0f, 0.0f);
_q = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
_w_B = Vector3f(0.0f, 0.0f, 0.0f);
_u[0] = _u[1] = _u[2] = _u[3] = 0.0f;
}
void Sih::gps_fix()
{
_sensor_gps.fix_type = 3; // 3D fix
_sensor_gps.satellites_used = _gps_used;
_sensor_gps.heading = NAN;
_sensor_gps.heading_offset = NAN;
_sensor_gps.s_variance_m_s = 0.5f;
_sensor_gps.c_variance_rad = 0.1f;
_sensor_gps.eph = 0.9f;
_sensor_gps.epv = 1.78f;
_sensor_gps.hdop = 0.7f;
_sensor_gps.vdop = 1.1f;
}
void Sih::gps_no_fix()
{
_sensor_gps.fix_type = 0; // 3D fix
_sensor_gps.satellites_used = _gps_used;
_sensor_gps.heading = NAN;
_sensor_gps.heading_offset = NAN;
_sensor_gps.s_variance_m_s = 100.f;
_sensor_gps.c_variance_rad = 100.f;
_sensor_gps.eph = 100.f;
_sensor_gps.epv = 100.f;
_sensor_gps.hdop = 100.f;
_sensor_gps.vdop = 100.f;
}
// read the motor signals outputted from the mixer
void Sih::read_motors()
{
actuator_outputs_s actuators_out;
if (_actuator_out_sub.update(&actuators_out)) {
for (int i = 0; i < NB_MOTORS; i++) { // saturate the motor signals
float u_sp = constrain((actuators_out.output[i] - PWM_DEFAULT_MIN) / (PWM_DEFAULT_MAX - PWM_DEFAULT_MIN), 0.0f, 1.0f);
_u[i] = _u[i] + _dt / _T_TAU * (u_sp - _u[i]); // first order transfer function with time constant tau
}
}
}
// generate the motors thrust and torque in the body frame
void Sih::generate_force_and_torques()
{
_T_B = Vector3f(0.0f, 0.0f, -_T_MAX * (+_u[0] + _u[1] + _u[2] + _u[3]));
_Mt_B = Vector3f(_L_ROLL * _T_MAX * (-_u[0] + _u[1] + _u[2] - _u[3]),
_L_PITCH * _T_MAX * (+_u[0] - _u[1] + _u[2] - _u[3]),
_Q_MAX * (+_u[0] + _u[1] - _u[2] - _u[3]));
_Fa_I = -_KDV * _v_I; // first order drag to slow down the aircraft
_Ma_B = -_KDW * _w_B; // first order angular damper
}
// apply the equations of motion of a rigid body and integrate one step
void Sih::equations_of_motion()
{
_C_IB = matrix::Dcm<float>(_q); // body to inertial transformation
// Equations of motion of a rigid body
_p_I_dot = _v_I; // position differential
_v_I_dot = (_W_I + _Fa_I + _C_IB * _T_B) / _MASS; // conservation of linear momentum
_q_dot = _q.derivative1(_w_B); // attitude differential
_w_B_dot = _Im1 * (_Mt_B + _Ma_B - _w_B.cross(_I * _w_B)); // conservation of angular momentum
// fake ground, avoid free fall
if (_p_I(2) > 0.0f && (_v_I_dot(2) > 0.0f || _v_I(2) > 0.0f)) {
if (!_grounded) { // if we just hit the floor
// for the accelerometer, compute the acceleration that will stop the vehicle in one time step
_v_I_dot = -_v_I / _dt;
} else {
_v_I_dot.setZero();
}
_v_I.setZero();
_w_B.setZero();
_grounded = true;
} else {
// integration: Euler forward
_p_I = _p_I + _p_I_dot * _dt;
_v_I = _v_I + _v_I_dot * _dt;
_q = _q + _q_dot * _dt; // as given in attitude_estimator_q_main.cpp
_q.normalize();
_w_B = _w_B + _w_B_dot * _dt;
_grounded = false;
}
}
// reconstruct the noisy sensor signals
void Sih::reconstruct_sensors_signals()
{
// The sensor signals reconstruction and noise levels are from
// Bulka, Eitan, and Meyer Nahon. "Autonomous fixed-wing aerobatics: from theory to flight."
// In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6573-6580. IEEE, 2018.
// IMU
_acc = _C_IB.transpose() * (_v_I_dot - Vector3f(0.0f, 0.0f, CONSTANTS_ONE_G)) + noiseGauss3f(0.5f, 1.7f, 1.4f);
_gyro = _w_B + noiseGauss3f(0.14f, 0.07f, 0.03f);
_mag = _C_IB.transpose() * _mu_I + noiseGauss3f(0.02f, 0.02f, 0.03f);
_mag(0) += _mag_offset_x;
_mag(1) += _mag_offset_y;
_mag(2) += _mag_offset_z;
// barometer
float altitude = (_H0 - _p_I(2)) + _baro_offset_m + generate_wgn() * 0.14f; // altitude with noise
_baro_p_mBar = CONSTANTS_STD_PRESSURE_MBAR * // reconstructed pressure in mBar
powf((1.0f + altitude * TEMP_GRADIENT / T1_K), -CONSTANTS_ONE_G / (TEMP_GRADIENT * CONSTANTS_AIR_GAS_CONST));
_baro_temp_c = T1_K + CONSTANTS_ABSOLUTE_NULL_CELSIUS + TEMP_GRADIENT * altitude; // reconstructed temperture in celcius
// GPS
_gps_lat_noiseless = _LAT0 + degrees((double)_p_I(0) / CONSTANTS_RADIUS_OF_EARTH);
_gps_lon_noiseless = _LON0 + degrees((double)_p_I(1) / CONSTANTS_RADIUS_OF_EARTH) / _COS_LAT0;
_gps_alt_noiseless = _H0 - _p_I(2);
_gps_lat = _gps_lat_noiseless + degrees((double)generate_wgn() * 0.2 / CONSTANTS_RADIUS_OF_EARTH);
_gps_lon = _gps_lon_noiseless + degrees((double)generate_wgn() * 0.2 / CONSTANTS_RADIUS_OF_EARTH) / _COS_LAT0;
_gps_alt = _gps_alt_noiseless + generate_wgn() * 0.5f;
_gps_vel = _v_I + noiseGauss3f(0.06f, 0.077f, 0.158f);
}
void Sih::send_gps()
{
_sensor_gps.timestamp = _now;
_sensor_gps.lat = (int32_t)(_gps_lat * 1e7); // Latitude in 1E-7 degrees
_sensor_gps.lon = (int32_t)(_gps_lon * 1e7); // Longitude in 1E-7 degrees
_sensor_gps.alt = (int32_t)(_gps_alt * 1000.0f); // Altitude in 1E-3 meters above MSL, (millimetres)
_sensor_gps.alt_ellipsoid = (int32_t)(_gps_alt * 1000); // Altitude in 1E-3 meters bove Ellipsoid, (millimetres)
_sensor_gps.vel_ned_valid = true; // True if NED velocity is valid
_sensor_gps.vel_m_s = sqrtf(_gps_vel(0) * _gps_vel(0) + _gps_vel(1) * _gps_vel(
1)); // GPS ground speed, (metres/sec)
_sensor_gps.vel_n_m_s = _gps_vel(0); // GPS North velocity, (metres/sec)
_sensor_gps.vel_e_m_s = _gps_vel(1); // GPS East velocity, (metres/sec)
_sensor_gps.vel_d_m_s = _gps_vel(2); // GPS Down velocity, (metres/sec)
_sensor_gps.cog_rad = atan2(_gps_vel(1),
_gps_vel(0)); // Course over ground (NOT heading, but direction of movement), -PI..PI, (radians)
if (_gps_used >= 4) {
gps_fix();
} else {
gps_no_fix();
}
_sensor_gps_pub.publish(_sensor_gps);
}
void Sih::send_dist_snsr()
{
_distance_snsr.timestamp = _now;
_distance_snsr.type = distance_sensor_s::MAV_DISTANCE_SENSOR_LASER;
_distance_snsr.orientation = distance_sensor_s::ROTATION_DOWNWARD_FACING;
_distance_snsr.min_distance = _distance_snsr_min;
_distance_snsr.max_distance = _distance_snsr_max;
_distance_snsr.signal_quality = -1;
_distance_snsr.device_id = 0;
if (_distance_snsr_override >= 0.f) {
_distance_snsr.current_distance = _distance_snsr_override;
} else {
_distance_snsr.current_distance = -_p_I(2) / _C_IB(2, 2);
if (_distance_snsr.current_distance > _distance_snsr_max) {
// this is based on lightware lw20 behaviour
_distance_snsr.current_distance = UINT16_MAX / 100.f;
}
}
_distance_snsr_pub.publish(_distance_snsr);
}
void Sih::publish_sih()
{
// publish angular velocity groundtruth
_vehicle_angular_velocity_gt.timestamp = hrt_absolute_time();
_vehicle_angular_velocity_gt.xyz[0] = _w_B(0); // rollspeed;
_vehicle_angular_velocity_gt.xyz[1] = _w_B(1); // pitchspeed;
_vehicle_angular_velocity_gt.xyz[2] = _w_B(2); // yawspeed;
_vehicle_angular_velocity_gt_pub.publish(_vehicle_angular_velocity_gt);
// publish attitude groundtruth
_att_gt.timestamp = hrt_absolute_time();
_att_gt.q[0] = _q(0);
_att_gt.q[1] = _q(1);
_att_gt.q[2] = _q(2);
_att_gt.q[3] = _q(3);
_att_gt_pub.publish(_att_gt);
// publish position groundtruth
_gpos_gt.timestamp = hrt_absolute_time();
_gpos_gt.lat = _gps_lat_noiseless;
_gpos_gt.lon = _gps_lon_noiseless;
_gpos_gt.alt = _gps_alt_noiseless;
_gpos_gt_pub.publish(_gpos_gt);
}
float Sih::generate_wgn() // generate white Gaussian noise sample with std=1
{
// algorithm 1:
// float temp=((float)(rand()+1))/(((float)RAND_MAX+1.0f));
// return sqrtf(-2.0f*logf(temp))*cosf(2.0f*M_PI_F*rand()/RAND_MAX);
// algorithm 2: from BlockRandGauss.hpp
static float V1, V2, S;
static bool phase = true;
float X;
if (phase) {
do {
float U1 = (float)rand() / RAND_MAX;
float U2 = (float)rand() / RAND_MAX;
V1 = 2.0f * U1 - 1.0f;
V2 = 2.0f * U2 - 1.0f;
S = V1 * V1 + V2 * V2;
} while (S >= 1.0f || fabsf(S) < 1e-8f);
X = V1 * float(sqrtf(-2.0f * float(logf(S)) / S));
} else {
X = V2 * float(sqrtf(-2.0f * float(logf(S)) / S));
}
phase = !phase;
return X;
}
// generate white Gaussian noise sample vector with specified std
Vector3f Sih::noiseGauss3f(float stdx, float stdy, float stdz)
{
return Vector3f(generate_wgn() * stdx, generate_wgn() * stdy, generate_wgn() * stdz);
}
int Sih::task_spawn(int argc, char *argv[])
{
Sih *instance = new Sih();
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int Sih::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int Sih::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
This module provide a simulator for quadrotors running fully
inside the hardware autopilot.
This simulator subscribes to "actuator_outputs" which are the actuator pwm
signals given by the mixer.
This simulator publishes the sensors signals corrupted with realistic noise
in order to incorporate the state estimator in the loop.
### Implementation
The simulator implements the equations of motion using matrix algebra.
Quaternion representation is used for the attitude.
Forward Euler is used for integration.
Most of the variables are declared global in the .hpp file to avoid stack overflow.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("sih", "simulation");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int sih_main(int argc, char *argv[])
{
return Sih::main(argc, argv);
}