rtl.cpp
24.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/****************************************************************************
*
* Copyright (c) 2013-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file rtl.cpp
*
* Helper class to access RTL
*
* @author Julian Oes <julian@oes.ch>
* @author Anton Babushkin <anton.babushkin@me.com>
* @author Julian Kent <julian@auterion.com>
*/
#include "rtl.h"
#include "navigator.h"
#include <dataman/dataman.h>
#include <lib/ecl/geo/geo.h>
static constexpr float DELAY_SIGMA = 0.01f;
using namespace time_literals;
using namespace math;
RTL::RTL(Navigator *navigator) :
MissionBlock(navigator),
ModuleParams(navigator)
{
}
void RTL::on_inactivation()
{
if (_navigator->get_precland()->is_activated()) {
_navigator->get_precland()->on_inactivation();
}
}
void RTL::on_inactive()
{
// Reset RTL state.
_rtl_state = RTL_STATE_NONE;
find_RTL_destination();
}
void RTL::find_RTL_destination()
{
// don't update RTL destination faster than 1 Hz
if (hrt_elapsed_time(&_destination_check_time) < 1_s) {
return;
}
if (!_navigator->home_position_valid()) {
return;
}
_destination_check_time = hrt_absolute_time();
// get home position:
home_position_s &home_landing_position = *_navigator->get_home_position();
// get global position
const vehicle_global_position_s &global_position = *_navigator->get_global_position();
// set destination to home per default, then check if other valid landing spot is closer
_destination.set(home_landing_position);
// get distance to home position
double dlat = home_landing_position.lat - global_position.lat;
double dlon = home_landing_position.lon - global_position.lon;
double lon_scale = cos(radians(global_position.lat));
auto coord_dist_sq = [lon_scale](double lat_diff, double lon_diff) -> double {
double lon_diff_scaled = lon_scale * matrix::wrap(lon_diff, -180., 180.);
return lat_diff * lat_diff + lon_diff_scaled * lon_diff_scaled;
};
double min_dist_squared = coord_dist_sq(dlat, dlon);
_destination.type = RTL_DESTINATION_HOME;
const bool vtol_in_rw_mode = _navigator->get_vstatus()->is_vtol
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING;
// consider the mission landing if not RTL_HOME type set
if (rtl_type() != RTL_HOME && _navigator->get_mission_start_land_available()) {
double mission_landing_lat;
double mission_landing_lon;
float mission_landing_alt;
RTLDestinationType destination_type = RTL_DESTINATION_MISSION_LANDING;
if (vtol_in_rw_mode) {
mission_landing_lat = _navigator->get_mission_landing_lat();
mission_landing_lon = _navigator->get_mission_landing_lon();
mission_landing_alt = _navigator->get_mission_landing_alt();
destination_type = RTL_DESTINATION_HOME;
} else {
mission_landing_lat = _navigator->get_mission_landing_start_lat();
mission_landing_lon = _navigator->get_mission_landing_start_lon();
mission_landing_alt = _navigator->get_mission_landing_start_alt();
}
// compare home position to landing position to decide which is closer
dlat = mission_landing_lat - global_position.lat;
dlon = mission_landing_lon - global_position.lon;
double dist_squared = coord_dist_sq(dlat, dlon);
// set destination to mission landing if closest or in RTL_LAND or RTL_MISSION (so not in RTL_CLOSEST)
if (dist_squared < min_dist_squared || rtl_type() != RTL_CLOSEST) {
min_dist_squared = dist_squared;
_destination.lat = mission_landing_lat;
_destination.lon = mission_landing_lon;
_destination.alt = mission_landing_alt;
_destination.type = destination_type;
}
}
// do not consider rally point if RTL type is set to RTL_MISSION, so exit function and use either home or mission landing
if (rtl_type() == RTL_MISSION) {
return;
}
// compare to safe landing positions
mission_safe_point_s closest_safe_point {};
mission_stats_entry_s stats;
int ret = dm_read(DM_KEY_SAFE_POINTS, 0, &stats, sizeof(mission_stats_entry_s));
int num_safe_points = 0;
if (ret == sizeof(mission_stats_entry_s)) {
num_safe_points = stats.num_items;
}
// check if a safe point is closer than home or landing
int closest_index = 0;
for (int current_seq = 1; current_seq <= num_safe_points; ++current_seq) {
mission_safe_point_s mission_safe_point;
if (dm_read(DM_KEY_SAFE_POINTS, current_seq, &mission_safe_point, sizeof(mission_safe_point_s)) !=
sizeof(mission_safe_point_s)) {
PX4_ERR("dm_read failed");
continue;
}
// TODO: take altitude into account for distance measurement
dlat = mission_safe_point.lat - global_position.lat;
dlon = mission_safe_point.lon - global_position.lon;
double dist_squared = coord_dist_sq(dlat, dlon);
if (dist_squared < min_dist_squared) {
closest_index = current_seq;
min_dist_squared = dist_squared;
closest_safe_point = mission_safe_point;
}
}
if (closest_index > 0) {
_destination.type = RTL_DESTINATION_SAFE_POINT;
// There is a safe point closer than home/mission landing
// TODO: handle all possible mission_safe_point.frame cases
switch (closest_safe_point.frame) {
case 0: // MAV_FRAME_GLOBAL
_destination.lat = closest_safe_point.lat;
_destination.lon = closest_safe_point.lon;
_destination.alt = closest_safe_point.alt;
_destination.yaw = home_landing_position.yaw;
break;
case 3: // MAV_FRAME_GLOBAL_RELATIVE_ALT
_destination.lat = closest_safe_point.lat;
_destination.lon = closest_safe_point.lon;
_destination.alt = closest_safe_point.alt + home_landing_position.alt; // alt of safe point is rel to home
_destination.yaw = home_landing_position.yaw;
break;
default:
mavlink_log_critical(_navigator->get_mavlink_log_pub(), "RTL: unsupported MAV_FRAME");
break;
}
}
// figure out how long the RTL will take
float rtl_xy_speed, rtl_z_speed;
get_rtl_xy_z_speed(rtl_xy_speed, rtl_z_speed);
matrix::Vector3f to_destination_vec;
get_vector_to_next_waypoint(global_position.lat, global_position.lon, _destination.lat, _destination.lon,
&to_destination_vec(0), &to_destination_vec(1));
to_destination_vec(2) = _destination.alt - global_position.alt;
float time_to_home_s = time_to_home(to_destination_vec, get_wind(), rtl_xy_speed, rtl_z_speed);
float rtl_flight_time_ratio = time_to_home_s / (60 * _param_rtl_flt_time.get());
rtl_flight_time_s rtl_flight_time{};
rtl_flight_time.timestamp = hrt_absolute_time();
rtl_flight_time.rtl_limit_fraction = rtl_flight_time_ratio;
rtl_flight_time.rtl_time_s = time_to_home_s;
_rtl_flight_time_pub.publish(rtl_flight_time);
}
void RTL::on_activation()
{
_deny_mission_landing = _navigator->get_vstatus()->is_vtol
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING;
// output the correct message, depending on where the RTL destination is
switch (_destination.type) {
case RTL_DESTINATION_HOME:
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: landing at home position.");
break;
case RTL_DESTINATION_MISSION_LANDING:
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: landing at mission landing.");
break;
case RTL_DESTINATION_SAFE_POINT:
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: landing at safe landing point.");
break;
}
const vehicle_global_position_s &global_position = *_navigator->get_global_position();
_rtl_loiter_rad = _param_rtl_loiter_rad.get();
if (_navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
_rtl_alt = calculate_return_alt_from_cone_half_angle((float)_param_rtl_cone_half_angle_deg.get());
} else {
_rtl_alt = max(global_position.alt, max(_destination.alt,
_navigator->get_home_position()->alt + _param_rtl_return_alt.get()));
}
if (_navigator->get_land_detected()->landed) {
// For safety reasons don't go into RTL if landed.
_rtl_state = RTL_STATE_LANDED;
} else if ((_destination.type == RTL_DESTINATION_MISSION_LANDING) && _navigator->getMissionLandingInProgress()) {
// we were just on a mission landing, set _rtl_state past RTL_STATE_RETURN such that navigator will engage mission mode,
// which will continue executing the landing
_rtl_state = RTL_STATE_DESCEND;
} else if ((global_position.alt < _destination.alt + _param_rtl_return_alt.get()) || _rtl_alt_min) {
// If lower than return altitude, climb up first.
// If rtl_alt_min is true then forcing altitude change even if above.
_rtl_state = RTL_STATE_CLIMB;
} else {
// Otherwise go straight to return
_rtl_state = RTL_STATE_RETURN;
}
setClimbAndReturnDone(_rtl_state > RTL_STATE_RETURN);
set_rtl_item();
}
void RTL::on_active()
{
if (_rtl_state != RTL_STATE_LANDED && is_mission_item_reached()) {
advance_rtl();
set_rtl_item();
}
if (_rtl_state == RTL_STATE_LAND && _param_rtl_pld_md.get() > 0) {
_navigator->get_precland()->on_active();
} else if (_navigator->get_precland()->is_activated()) {
_navigator->get_precland()->on_inactivation();
}
}
void RTL::set_rtl_item()
{
// RTL_TYPE: mission landing.
// Landing using planned mission landing, fly to DO_LAND_START instead of returning _destination.
// After reaching DO_LAND_START, do nothing, let navigator takeover with mission landing.
if (_destination.type == RTL_DESTINATION_MISSION_LANDING) {
if (_rtl_state > RTL_STATE_RETURN) {
if (_navigator->start_mission_landing()) {
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: using mission landing");
return;
} else {
// Otherwise use regular RTL.
mavlink_log_critical(_navigator->get_mavlink_log_pub(), "RTL: unable to use mission landing");
}
}
}
_navigator->set_can_loiter_at_sp(false);
const vehicle_global_position_s &gpos = *_navigator->get_global_position();
position_setpoint_triplet_s *pos_sp_triplet = _navigator->get_position_setpoint_triplet();
const float destination_dist = get_distance_to_next_waypoint(_destination.lat, _destination.lon, gpos.lat, gpos.lon);
const float descend_altitude_target = min(_destination.alt + _param_rtl_descend_alt.get(), gpos.alt);
const float loiter_altitude = min(descend_altitude_target, _rtl_alt);
switch (_rtl_state) {
case RTL_STATE_CLIMB: {
// do not use LOITER_TO_ALT for rotary wing mode as it would then always climb to at least MIS_LTRMIN_ALT,
// even if current climb altitude is below (e.g. RTL immediately after take off)
if (_navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
_mission_item.nav_cmd = NAV_CMD_WAYPOINT;
} else {
_mission_item.nav_cmd = NAV_CMD_LOITER_TO_ALT;
}
_mission_item.lat = gpos.lat;
_mission_item.lon = gpos.lon;
_mission_item.altitude = _rtl_alt;
_mission_item.altitude_is_relative = false;
_mission_item.yaw = _navigator->get_local_position()->heading;
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = 0.0f;
_mission_item.autocontinue = true;
_mission_item.origin = ORIGIN_ONBOARD;
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: climb to %d m (%d m above destination)",
(int)ceilf(_rtl_alt), (int)ceilf(_rtl_alt - _destination.alt));
break;
}
case RTL_STATE_RETURN: {
// Don't change altitude.
_mission_item.nav_cmd = NAV_CMD_WAYPOINT;
_mission_item.lat = _destination.lat;
_mission_item.lon = _destination.lon;
_mission_item.altitude = _rtl_alt;
_mission_item.altitude_is_relative = false;
// Use destination yaw if close to _destination.
// Check if we are pretty close to the destination already.
if (destination_dist < _param_rtl_min_dist.get()) {
_mission_item.yaw = _destination.yaw;
} else {
// Use current heading to _destination.
_mission_item.yaw = get_bearing_to_next_waypoint(gpos.lat, gpos.lon, _destination.lat, _destination.lon);
}
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = 0.0f;
_mission_item.autocontinue = true;
_mission_item.origin = ORIGIN_ONBOARD;
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: return at %d m (%d m above destination)",
(int)ceilf(_mission_item.altitude), (int)ceilf(_mission_item.altitude - _destination.alt));
break;
}
case RTL_STATE_DESCEND: {
_mission_item.nav_cmd = NAV_CMD_LOITER_TO_ALT;
_mission_item.lat = _destination.lat;
_mission_item.lon = _destination.lon;
_mission_item.altitude = loiter_altitude;
_mission_item.altitude_is_relative = false;
// Except for vtol which might be still off here and should point towards this location.
const float d_current = get_distance_to_next_waypoint(gpos.lat, gpos.lon, _mission_item.lat, _mission_item.lon);
if (_navigator->get_vstatus()->is_vtol && (d_current > _navigator->get_acceptance_radius())) {
_mission_item.yaw = get_bearing_to_next_waypoint(gpos.lat, gpos.lon, _mission_item.lat, _mission_item.lon);
} else {
_mission_item.yaw = _destination.yaw;
}
if (_navigator->get_vstatus()->is_vtol) {
_mission_item.loiter_radius = _rtl_loiter_rad;
}
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = 0.0f;
_mission_item.autocontinue = true;
_mission_item.origin = ORIGIN_ONBOARD;
// Disable previous setpoint to prevent drift.
pos_sp_triplet->previous.valid = false;
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: descend to %d m (%d m above destination)",
(int)ceilf(_mission_item.altitude), (int)ceilf(_mission_item.altitude - _destination.alt));
break;
}
case RTL_STATE_LOITER: {
const bool autoland = (_param_rtl_land_delay.get() > FLT_EPSILON);
// Don't change altitude.
_mission_item.lat = _destination.lat;
_mission_item.lon = _destination.lon;
_mission_item.altitude = loiter_altitude;
_mission_item.altitude_is_relative = false;
_mission_item.yaw = _destination.yaw;
_mission_item.loiter_radius = _navigator->get_loiter_radius();
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = max(_param_rtl_land_delay.get(), 0.0f);
_mission_item.autocontinue = autoland;
_mission_item.origin = ORIGIN_ONBOARD;
_navigator->set_can_loiter_at_sp(true);
if (autoland) {
_mission_item.nav_cmd = NAV_CMD_LOITER_TIME_LIMIT;
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: loiter %.1fs",
(double)get_time_inside(_mission_item));
} else {
_mission_item.nav_cmd = NAV_CMD_LOITER_UNLIMITED;
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: completed, loitering");
}
break;
}
case RTL_STATE_HEAD_TO_CENTER: {
_mission_item.nav_cmd = NAV_CMD_WAYPOINT;
_mission_item.lat = _destination.lat;
_mission_item.lon = _destination.lon;
_mission_item.altitude = loiter_altitude;
_mission_item.altitude_is_relative = false;
_mission_item.yaw = get_bearing_to_next_waypoint(gpos.lat, gpos.lon, _mission_item.lat, _mission_item.lon);
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = 0.0f;
_mission_item.autocontinue = true;
_mission_item.origin = ORIGIN_ONBOARD;
// Disable previous setpoint to prevent drift.
pos_sp_triplet->previous.valid = false;
break;
}
case RTL_STATE_TRANSITION_TO_MC: {
set_vtol_transition_item(&_mission_item, vtol_vehicle_status_s::VEHICLE_VTOL_STATE_MC);
break;
}
case RTL_MOVE_TO_LAND_HOVER_VTOL: {
_mission_item.nav_cmd = NAV_CMD_WAYPOINT;
_mission_item.lat = _destination.lat;
_mission_item.lon = _destination.lon;
_mission_item.altitude = loiter_altitude;
_mission_item.altitude_is_relative = false;
_mission_item.yaw = get_bearing_to_next_waypoint(gpos.lat, gpos.lon, _mission_item.lat, _mission_item.lon);
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.origin = ORIGIN_ONBOARD;
break;
}
case RTL_STATE_LAND: {
// Land at destination.
_mission_item.nav_cmd = NAV_CMD_LAND;
_mission_item.lat = _destination.lat;
_mission_item.lon = _destination.lon;
_mission_item.yaw = _destination.yaw;
_mission_item.altitude = _destination.alt;
_mission_item.altitude_is_relative = false;
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = 0.0f;
_mission_item.autocontinue = true;
_mission_item.origin = ORIGIN_ONBOARD;
_mission_item.land_precision = _param_rtl_pld_md.get();
if (_mission_item.land_precision == 1) {
_navigator->get_precland()->set_mode(PrecLandMode::Opportunistic);
_navigator->get_precland()->on_activation();
} else if (_mission_item.land_precision == 2) {
_navigator->get_precland()->set_mode(PrecLandMode::Required);
_navigator->get_precland()->on_activation();
}
mavlink_log_info(_navigator->get_mavlink_log_pub(), "RTL: land at destination");
break;
}
case RTL_STATE_LANDED: {
set_idle_item(&_mission_item);
set_return_alt_min(false);
break;
}
default:
break;
}
reset_mission_item_reached();
// Execute command if set. This is required for commands like VTOL transition.
if (!item_contains_position(_mission_item)) {
issue_command(_mission_item);
}
// Convert mission item to current position setpoint and make it valid.
mission_apply_limitation(_mission_item);
if (mission_item_to_position_setpoint(_mission_item, &pos_sp_triplet->current)) {
_navigator->set_position_setpoint_triplet_updated();
}
}
void RTL::advance_rtl()
{
// determines if the vehicle should loiter above land
const bool descend_and_loiter = _param_rtl_land_delay.get() < -DELAY_SIGMA || _param_rtl_land_delay.get() > DELAY_SIGMA;
// vehicle is a vtol and currently in fixed wing mode
const bool vtol_in_fw_mode = _navigator->get_vstatus()->is_vtol
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING;
switch (_rtl_state) {
case RTL_STATE_CLIMB:
_rtl_state = RTL_STATE_RETURN;
break;
case RTL_STATE_RETURN:
setClimbAndReturnDone(true);
if (vtol_in_fw_mode || descend_and_loiter) {
_rtl_state = RTL_STATE_DESCEND;
} else {
_rtl_state = RTL_STATE_LAND;
}
break;
case RTL_STATE_DESCEND:
if (descend_and_loiter) {
_rtl_state = RTL_STATE_LOITER;
} else if (vtol_in_fw_mode) {
_rtl_state = RTL_STATE_HEAD_TO_CENTER;
} else {
_rtl_state = RTL_STATE_LAND;
}
break;
case RTL_STATE_LOITER:
if (vtol_in_fw_mode) {
_rtl_state = RTL_STATE_TRANSITION_TO_MC;
} else {
_rtl_state = RTL_STATE_LAND;
}
_rtl_state = RTL_STATE_LAND;
break;
case RTL_STATE_HEAD_TO_CENTER:
_rtl_state = RTL_STATE_TRANSITION_TO_MC;
break;
case RTL_STATE_TRANSITION_TO_MC:
_rtl_state = RTL_MOVE_TO_LAND_HOVER_VTOL;
break;
case RTL_MOVE_TO_LAND_HOVER_VTOL:
_rtl_state = RTL_STATE_LAND;
break;
case RTL_STATE_LAND:
_rtl_state = RTL_STATE_LANDED;
break;
default:
break;
}
}
float RTL::calculate_return_alt_from_cone_half_angle(float cone_half_angle_deg)
{
const vehicle_global_position_s &gpos = *_navigator->get_global_position();
// horizontal distance to destination
const float destination_dist = get_distance_to_next_waypoint(_destination.lat, _destination.lon, gpos.lat, gpos.lon);
// minium rtl altitude to use when outside of horizontal acceptance radius of target position.
// We choose the minimum height to be two times the distance from the land position in order to
// avoid the vehicle touching the ground while still moving horizontally.
const float return_altitude_min_outside_acceptance_rad_amsl = _destination.alt + 2.0f *
_navigator->get_acceptance_radius();
float return_altitude_amsl = _destination.alt + _param_rtl_return_alt.get();
if (destination_dist <= _navigator->get_acceptance_radius()) {
return_altitude_amsl = _destination.alt + 2.0f * destination_dist;
} else {
if (cone_half_angle_deg > 0.0f && destination_dist <= _param_rtl_min_dist.get()) {
// constrain cone half angle to meaningful values. All other cases are already handled above.
const float cone_half_angle_rad = radians(constrain(cone_half_angle_deg, 1.0f, 89.0f));
// minimum altitude we need in order to be within the user defined cone
const float cone_intersection_altitude_amsl = destination_dist / tanf(cone_half_angle_rad) + _destination.alt;
return_altitude_amsl = min(cone_intersection_altitude_amsl, return_altitude_amsl);
}
return_altitude_amsl = max(return_altitude_amsl, return_altitude_min_outside_acceptance_rad_amsl);
}
return max(return_altitude_amsl, gpos.alt);
}
void RTL::get_rtl_xy_z_speed(float &xy, float &z)
{
uint8_t vehicle_type = _navigator->get_vstatus()->vehicle_type;
// Caution: here be dragons!
// Use C API to allow this code to be compiled with builds that don't have FW/MC/Rover
if (vehicle_type != _rtl_vehicle_type) {
_rtl_vehicle_type = vehicle_type;
switch (vehicle_type) {
case vehicle_status_s::VEHICLE_TYPE_ROTARY_WING:
_param_rtl_xy_speed = param_find("MPC_XY_CRUISE");
_param_rtl_descent_speed = param_find("MPC_Z_VEL_MAX_DN");
break;
case vehicle_status_s::VEHICLE_TYPE_FIXED_WING:
_param_rtl_xy_speed = param_find("FW_AIRSPD_TRIM");
_param_rtl_descent_speed = param_find("FW_T_SINK_MIN");
break;
case vehicle_status_s::VEHICLE_TYPE_ROVER:
_param_rtl_xy_speed = param_find("GND_SPEED_THR_SC");
_param_rtl_descent_speed = PARAM_INVALID;
break;
}
}
if ((_param_rtl_xy_speed == PARAM_INVALID) || param_get(_param_rtl_xy_speed, &xy) != PX4_OK) {
xy = 1e6f;
}
if ((_param_rtl_descent_speed == PARAM_INVALID) || param_get(_param_rtl_descent_speed, &z) != PX4_OK) {
z = 1e6f;
}
}
matrix::Vector2f RTL::get_wind()
{
_wind_sub.update();
matrix::Vector2f wind;
if (hrt_absolute_time() - _wind_sub.get().timestamp < 1_s) {
wind(0) = _wind_sub.get().windspeed_north;
wind(1) = _wind_sub.get().windspeed_east;
}
return wind;
}
float time_to_home(const matrix::Vector3f &to_home_vec,
const matrix::Vector2f &wind_velocity, float vehicle_speed_m_s, float vehicle_descent_speed_m_s)
{
const matrix::Vector2f to_home = to_home_vec.xy();
const float alt_change = to_home_vec(2);
const matrix::Vector2f to_home_dir = to_home.unit_or_zero();
const float dist_to_home = to_home.norm();
const float wind_towards_home = wind_velocity.dot(to_home_dir);
const float wind_across_home = matrix::Vector2f(wind_velocity - to_home_dir * wind_towards_home).norm();
// Note: use fminf so that we don't _rely_ on wind towards home to make RTL more efficient
const float cruise_speed = sqrtf(vehicle_speed_m_s * vehicle_speed_m_s - wind_across_home * wind_across_home) + fminf(
0.f, wind_towards_home);
if (!PX4_ISFINITE(cruise_speed) || cruise_speed <= 0) {
return INFINITY; // we never reach home if the wind is stronger than vehicle speed
}
// assume horizontal and vertical motions happen serially, so their time adds
float horiz = dist_to_home / cruise_speed;
float descent = fabsf(alt_change) / vehicle_descent_speed_m_s;
return horiz + descent;
}