FixedwingPositionControl.cpp 66.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
/****************************************************************************
 *
 *   Copyright (c) 2013-2019 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "FixedwingPositionControl.hpp"

#include <vtol_att_control/vtol_type.h>

using math::constrain;
using math::max;
using math::min;
using math::radians;

using matrix::Dcmf;
using matrix::Eulerf;
using matrix::Quatf;
using matrix::Vector2f;
using matrix::Vector2d;
using matrix::Vector3f;
using matrix::wrap_pi;

FixedwingPositionControl::FixedwingPositionControl(bool vtol) :
	ModuleParams(nullptr),
	WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
	_attitude_sp_pub(vtol ? ORB_ID(fw_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
	_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle")),
	_launchDetector(this),
	_runway_takeoff(this)
{
	if (vtol) {
		_param_handle_airspeed_trans = param_find("VT_ARSP_TRANS");

		// VTOL parameter VTOL_TYPE
		int32_t vt_type = -1;
		param_get(param_find("VT_TYPE"), &vt_type);

		_vtol_tailsitter = (static_cast<vtol_type>(vt_type) == vtol_type::TAILSITTER);
	}

	// limit to 50 Hz
	_local_pos_sub.set_interval_ms(20);

	/* fetch initial parameter values */
	parameters_update();
}

FixedwingPositionControl::~FixedwingPositionControl()
{
	perf_free(_loop_perf);
}

bool
FixedwingPositionControl::init()
{
	if (!_local_pos_sub.registerCallback()) {
		PX4_ERR("vehicle local position callback registration failed!");
		return false;
	}

	return true;
}

int
FixedwingPositionControl::parameters_update()
{
	updateParams();

	// VTOL parameter VT_ARSP_TRANS
	if (_param_handle_airspeed_trans != PARAM_INVALID) {
		param_get(_param_handle_airspeed_trans, &_param_airspeed_trans);
	}

	// L1 control parameters
	_l1_control.set_l1_damping(_param_fw_l1_damping.get());
	_l1_control.set_l1_period(_param_fw_l1_period.get());
	_l1_control.set_l1_roll_limit(radians(_param_fw_r_lim.get()));
	_l1_control.set_roll_slew_rate(radians(_param_fw_l1_r_slew_max.get()));

	// TECS parameters
	_tecs.set_max_climb_rate(_param_fw_t_clmb_max.get());
	_tecs.set_max_sink_rate(_param_fw_t_sink_max.get());
	_tecs.set_speed_weight(_param_fw_t_spdweight.get());
	_tecs.set_equivalent_airspeed_min(_param_fw_airspd_min.get());
	_tecs.set_equivalent_airspeed_max(_param_fw_airspd_max.get());
	_tecs.set_min_sink_rate(_param_fw_t_sink_min.get());
	_tecs.set_throttle_damp(_param_fw_t_thr_damp.get());
	_tecs.set_integrator_gain_throttle(_param_fw_t_I_gain_thr.get());
	_tecs.set_integrator_gain_pitch(_param_fw_t_I_gain_pit.get());
	_tecs.set_throttle_slewrate(_param_fw_thr_slew_max.get());
	_tecs.set_vertical_accel_limit(_param_fw_t_vert_acc.get());
	_tecs.set_speed_comp_filter_omega(_param_fw_t_spd_omega.get());
	_tecs.set_roll_throttle_compensation(_param_fw_t_rll2thr.get());
	_tecs.set_pitch_damping(_param_fw_t_ptch_damp.get());
	_tecs.set_height_error_time_constant(_param_fw_t_h_error_tc.get());
	_tecs.set_heightrate_ff(_param_fw_t_hrate_ff.get());
	_tecs.set_airspeed_error_time_constant(_param_fw_t_tas_error_tc.get());
	_tecs.set_ste_rate_time_const(_param_ste_rate_time_const.get());
	_tecs.set_speed_derivative_time_constant(_param_tas_rate_time_const.get());
	_tecs.set_seb_rate_ff_gain(_param_seb_rate_ff.get());


	// Landing slope
	/* check if negative value for 2/3 of flare altitude is set for throttle cut */
	float land_thrust_lim_alt_relative = _param_fw_lnd_tlalt.get();

	if (land_thrust_lim_alt_relative < 0.0f) {
		land_thrust_lim_alt_relative = 0.66f * _param_fw_lnd_flalt.get();
	}

	_landingslope.update(radians(_param_fw_lnd_ang.get()), _param_fw_lnd_flalt.get(), land_thrust_lim_alt_relative,
			     _param_fw_lnd_hvirt.get());

	landing_status_publish();

	// sanity check parameters
	if ((_param_fw_airspd_max.get() < _param_fw_airspd_min.get()) ||
	    (_param_fw_airspd_max.get() < 5.0f) ||
	    (_param_fw_airspd_min.get() > 100.0f) ||
	    (_param_fw_airspd_trim.get() < _param_fw_airspd_min.get()) ||
	    (_param_fw_airspd_trim.get() > _param_fw_airspd_max.get())) {

		mavlink_log_critical(&_mavlink_log_pub, "Airspeed parameters invalid");

		return PX4_ERROR;
	}

	return PX4_OK;
}

void
FixedwingPositionControl::vehicle_control_mode_poll()
{
	if (_control_mode_sub.updated()) {
		const bool was_armed = _control_mode.flag_armed;

		if (_control_mode_sub.copy(&_control_mode)) {

			// reset state when arming
			if (!was_armed && _control_mode.flag_armed) {
				reset_takeoff_state(true);
				reset_landing_state();
			}
		}
	}
}

void
FixedwingPositionControl::vehicle_command_poll()
{
	vehicle_command_s vehicle_command;

	while (_vehicle_command_sub.update(&vehicle_command)) {
		if (vehicle_command.command == vehicle_command_s::VEHICLE_CMD_DO_GO_AROUND) {
			// only abort landing before point of no return (horizontal and vertical)
			if (_control_mode.flag_control_auto_enabled &&
			    _pos_sp_triplet.current.valid &&
			    (_pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LAND)) {

				abort_landing(true);
			}
		}

	}
}

void
FixedwingPositionControl::airspeed_poll()
{
	bool airspeed_valid = _airspeed_valid;
	airspeed_validated_s airspeed_validated;

	if ((_param_fw_arsp_mode.get() == 0) && _airspeed_validated_sub.update(&airspeed_validated)) {

		_eas2tas = 1.0f; //this is the default value, taken in case of invalid airspeed

		if (PX4_ISFINITE(airspeed_validated.calibrated_airspeed_m_s)
		    && PX4_ISFINITE(airspeed_validated.true_airspeed_m_s)
		    && (airspeed_validated.calibrated_airspeed_m_s > 0.0f)) {

			airspeed_valid = true;

			_airspeed_last_valid = airspeed_validated.timestamp;
			_airspeed = airspeed_validated.calibrated_airspeed_m_s;

			_eas2tas = constrain(airspeed_validated.true_airspeed_m_s / airspeed_validated.calibrated_airspeed_m_s, 0.9f, 2.0f);
		}

	} else {
		// no airspeed updates for one second
		if (airspeed_valid && (hrt_elapsed_time(&_airspeed_last_valid) > 1_s)) {
			airspeed_valid = false;
		}
	}

	// update TECS if validity changed
	if (airspeed_valid != _airspeed_valid) {
		_tecs.enable_airspeed(airspeed_valid);
		_airspeed_valid = airspeed_valid;
	}
}

void
FixedwingPositionControl::manual_control_setpoint_poll()
{
	_manual_control_setpoint_sub.update(&_manual_control_setpoint);

	_manual_control_setpoint_altitude = _manual_control_setpoint.x;
	_manual_control_setpoint_airspeed = math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f);

	if (_param_fw_posctl_inv_st.get()) {
		/* Alternate stick allocation (similar concept as for multirotor systems:
		 * demanding up/down with the throttle stick, and move faster/break with the pitch one.
		 */
		_manual_control_setpoint_altitude = -(math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f) * 2.f - 1.f);
		_manual_control_setpoint_airspeed = math::constrain(_manual_control_setpoint.x, 0.0f, 1.0f) / 2.f + 0.5f;
	}
}


void
FixedwingPositionControl::vehicle_attitude_poll()
{
	vehicle_attitude_s att;

	if (_vehicle_attitude_sub.update(&att)) {
		vehicle_angular_velocity_s angular_velocity{};
		_vehicle_angular_velocity_sub.copy(&angular_velocity);
		const Vector3f rates{angular_velocity.xyz};

		Dcmf R{Quatf(att.q)};

		// if the vehicle is a tailsitter we have to rotate the attitude by the pitch offset
		// between multirotor and fixed wing flight
		if (_vtol_tailsitter) {
			const Dcmf R_offset{Eulerf{0.f, M_PI_2_F, 0.f}};
			R = R * R_offset;

			_yawrate = rates(0);

		} else {
			_yawrate = rates(2);
		}

		const Eulerf euler_angles(R);
		_pitch = euler_angles(1);
		_yaw = euler_angles(2);

		_body_acceleration = R.transpose() * Vector3f{_local_pos.ax, _local_pos.ay, _local_pos.az};
		_body_velocity = R.transpose() * Vector3f{_local_pos.vx, _local_pos.vy, _local_pos.vz};

		// update TECS load factor
		const float load_factor = 1.f / cosf(euler_angles(0));
		_tecs.set_load_factor(load_factor);
	}
}

float
FixedwingPositionControl::get_demanded_airspeed()
{
	float altctrl_airspeed = 0;

	// neutral throttle corresponds to trim airspeed
	if (_manual_control_setpoint_airspeed < 0.5f) {
		// lower half of throttle is min to trim airspeed
		altctrl_airspeed = _param_fw_airspd_min.get() +
				   (_param_fw_airspd_trim.get() - _param_fw_airspd_min.get()) *
				   _manual_control_setpoint_airspeed * 2;

	} else {
		// upper half of throttle is trim to max airspeed
		altctrl_airspeed = _param_fw_airspd_trim.get() +
				   (_param_fw_airspd_max.get() - _param_fw_airspd_trim.get()) *
				   (_manual_control_setpoint_airspeed * 2 - 1);
	}

	return altctrl_airspeed;
}

float
FixedwingPositionControl::calculate_target_airspeed(float airspeed_demand, const Vector2f &ground_speed)
{
	/*
	 * Calculate accelerated stall airspeed factor from commanded bank angle and use it to increase minimum airspeed.
	 *
	 *  We don't know the stall speed of the aircraft, but assuming user defined
	 *  minimum airspeed (FW_AIRSPD_MIN) is slightly larger than stall speed
	 *  this is close enough.
	 *
	 * increase lift vector to balance additional weight in bank
	 *  cos(bank angle) = W/L = 1/n
	 *   n is the load factor
	 *
	 * lift is proportional to airspeed^2 so the increase in stall speed is
	 *  Vsacc = Vs * sqrt(n)
	 *
	 */
	float adjusted_min_airspeed = _param_fw_airspd_min.get();

	if (_airspeed_valid && PX4_ISFINITE(_att_sp.roll_body)) {

		adjusted_min_airspeed = constrain(_param_fw_airspd_min.get() / sqrtf(cosf(_att_sp.roll_body)),
						  _param_fw_airspd_min.get(), _param_fw_airspd_max.get());
	}

	// groundspeed undershoot
	if (!_l1_control.circle_mode()) {
		/*
		 * This error value ensures that a plane (as long as its throttle capability is
		 * not exceeded) travels towards a waypoint (and is not pushed more and more away
		 * by wind). Not countering this would lead to a fly-away.
		 */
		const float ground_speed_body = _body_velocity(0);

		if (ground_speed_body < _param_fw_gnd_spd_min.get()) {
			airspeed_demand += max(_param_fw_gnd_spd_min.get() - ground_speed_body, 0.0f);
		}
	}

	// add minimum ground speed undershoot (only non-zero in presence of sufficient wind)
	// sanity check: limit to range
	return constrain(airspeed_demand, adjusted_min_airspeed, _param_fw_airspd_max.get());
}

void
FixedwingPositionControl::tecs_status_publish()
{
	tecs_status_s t{};

	switch (_tecs.tecs_mode()) {
	case TECS::ECL_TECS_MODE_NORMAL:
		t.mode = tecs_status_s::TECS_MODE_NORMAL;
		break;

	case TECS::ECL_TECS_MODE_UNDERSPEED:
		t.mode = tecs_status_s::TECS_MODE_UNDERSPEED;
		break;

	case TECS::ECL_TECS_MODE_BAD_DESCENT:
		t.mode = tecs_status_s::TECS_MODE_BAD_DESCENT;
		break;

	case TECS::ECL_TECS_MODE_CLIMBOUT:
		t.mode = tecs_status_s::TECS_MODE_CLIMBOUT;
		break;
	}

	t.altitude_sp = _tecs.hgt_setpoint_adj();
	t.altitude_filtered = _tecs.vert_pos_state();

	t.true_airspeed_sp = _tecs.TAS_setpoint_adj();
	t.true_airspeed_filtered = _tecs.tas_state();

	t.height_rate_setpoint = _tecs.hgt_rate_setpoint();
	t.height_rate = _tecs.vert_vel_state();

	t.equivalent_airspeed_sp = _tecs.get_EAS_setpoint();
	t.true_airspeed_derivative_sp = _tecs.TAS_rate_setpoint();
	t.true_airspeed_derivative = _tecs.speed_derivative();

	t.total_energy_error = _tecs.STE_error();
	t.total_energy_rate_error = _tecs.STE_rate_error();

	t.energy_distribution_error = _tecs.SEB_error();
	t.energy_distribution_rate_error = _tecs.SEB_rate_error();

	t.total_energy = _tecs.STE();
	t.total_energy_rate = _tecs.STE_rate();
	t.total_energy_balance = _tecs.SEB();
	t.total_energy_balance_rate = _tecs.SEB_rate();

	t.total_energy_sp = _tecs.STE_setpoint();
	t.total_energy_rate_sp = _tecs.STE_rate_setpoint();
	t.total_energy_balance_sp = _tecs.SEB_setpoint();
	t.total_energy_balance_rate_sp = _tecs.SEB_rate_setpoint();

	t.throttle_integ = _tecs.throttle_integ_state();
	t.pitch_integ = _tecs.pitch_integ_state();

	t.throttle_sp = _tecs.get_throttle_setpoint();

	t.timestamp = hrt_absolute_time();

	_tecs_status_pub.publish(t);
}

void
FixedwingPositionControl::status_publish()
{
	position_controller_status_s pos_ctrl_status = {};

	pos_ctrl_status.nav_roll = _att_sp.roll_body;
	pos_ctrl_status.nav_pitch = _att_sp.pitch_body;
	pos_ctrl_status.nav_bearing = _l1_control.nav_bearing();

	pos_ctrl_status.target_bearing = _l1_control.target_bearing();
	pos_ctrl_status.xtrack_error = _l1_control.crosstrack_error();

	pos_ctrl_status.wp_dist = get_distance_to_next_waypoint(_current_latitude, _current_longitude,
				  _pos_sp_triplet.current.lat, _pos_sp_triplet.current.lon);

	pos_ctrl_status.acceptance_radius = _l1_control.switch_distance(500.0f);

	pos_ctrl_status.yaw_acceptance = NAN;

	pos_ctrl_status.timestamp = hrt_absolute_time();

	pos_ctrl_status.type = _type;

	_pos_ctrl_status_pub.publish(pos_ctrl_status);
}

void
FixedwingPositionControl::landing_status_publish()
{
	position_controller_landing_status_s pos_ctrl_landing_status = {};

	pos_ctrl_landing_status.slope_angle_rad = _landingslope.landing_slope_angle_rad();
	pos_ctrl_landing_status.horizontal_slope_displacement = _landingslope.horizontal_slope_displacement();
	pos_ctrl_landing_status.flare_length = _landingslope.flare_length();

	pos_ctrl_landing_status.abort_landing = _land_abort;

	pos_ctrl_landing_status.timestamp = hrt_absolute_time();

	_pos_ctrl_landing_status_pub.publish(pos_ctrl_landing_status);
}

void
FixedwingPositionControl::abort_landing(bool abort)
{
	// only announce changes
	if (abort && !_land_abort) {
		mavlink_log_critical(&_mavlink_log_pub, "Landing aborted");
	}

	_land_abort = abort;
	landing_status_publish();
}

void
FixedwingPositionControl::get_waypoint_heading_distance(float heading, position_setpoint_s &waypoint_prev,
		position_setpoint_s &waypoint_next, bool flag_init)
{
	position_setpoint_s temp_prev = waypoint_prev;
	position_setpoint_s temp_next = waypoint_next;

	if (flag_init) {
		// previous waypoint: HDG_HOLD_SET_BACK_DIST meters behind us
		waypoint_from_heading_and_distance(_current_latitude, _current_longitude, heading + radians(180.0f),
						   HDG_HOLD_SET_BACK_DIST, &temp_prev.lat, &temp_prev.lon);

		// next waypoint: HDG_HOLD_DIST_NEXT meters in front of us
		waypoint_from_heading_and_distance(_current_latitude, _current_longitude, heading,
						   HDG_HOLD_DIST_NEXT, &temp_next.lat, &temp_next.lon);

	} else {
		// use the existing flight path from prev to next

		// previous waypoint: shifted HDG_HOLD_REACHED_DIST + HDG_HOLD_SET_BACK_DIST
		create_waypoint_from_line_and_dist(waypoint_next.lat, waypoint_next.lon, waypoint_prev.lat, waypoint_prev.lon,
						   HDG_HOLD_REACHED_DIST + HDG_HOLD_SET_BACK_DIST, &temp_prev.lat, &temp_prev.lon);

		// next waypoint: shifted -(HDG_HOLD_DIST_NEXT + HDG_HOLD_REACHED_DIST)
		create_waypoint_from_line_and_dist(waypoint_next.lat, waypoint_next.lon, waypoint_prev.lat, waypoint_prev.lon,
						   -(HDG_HOLD_REACHED_DIST + HDG_HOLD_DIST_NEXT), &temp_next.lat, &temp_next.lon);
	}

	waypoint_prev = temp_prev;
	waypoint_prev.alt = _hold_alt;
	waypoint_prev.valid = true;

	waypoint_next = temp_next;
	waypoint_next.alt = _hold_alt;
	waypoint_next.valid = true;
}

float
FixedwingPositionControl::get_terrain_altitude_takeoff(float takeoff_alt)
{
	float terrain_alt = _local_pos.ref_alt - (_local_pos.dist_bottom + _local_pos.z);

	if (PX4_ISFINITE(terrain_alt) && _local_pos.dist_bottom_valid) {
		return terrain_alt;
	}

	return takeoff_alt;
}

void
FixedwingPositionControl::update_desired_altitude(float dt)
{
	/*
	 * The complete range is -1..+1, so this is 6%
	 * of the up or down range or 3% of the total range.
	 */
	const float deadBand = 0.06f;

	/*
	 * The correct scaling of the complete range needs
	 * to account for the missing part of the slope
	 * due to the deadband
	 */
	const float factor = 1.0f - deadBand;

	/*
	 * Reset the hold altitude to the current altitude if the uncertainty
	 * changes significantly.
	 * This is to guard against uncommanded altitude changes
	 * when the altitude certainty increases or decreases.
	 */

	if (fabsf(_althold_epv - _local_pos.epv) > ALTHOLD_EPV_RESET_THRESH) {
		_hold_alt = _current_altitude;
		_althold_epv = _local_pos.epv;
	}

	/*
	 * Manual control has as convention the rotation around
	 * an axis. Positive X means to rotate positively around
	 * the X axis in NED frame, which is pitching down
	 */
	if (_manual_control_setpoint_altitude > deadBand) {
		/* pitching down */
		float pitch = -(_manual_control_setpoint_altitude - deadBand) / factor;
		_hold_alt += (_param_fw_t_sink_max.get() * dt) * pitch;
		_was_in_deadband = false;

	} else if (_manual_control_setpoint_altitude < - deadBand) {
		/* pitching up */
		float pitch = -(_manual_control_setpoint_altitude + deadBand) / factor;
		_hold_alt += (_param_fw_t_clmb_max.get() * dt) * pitch;
		_was_in_deadband = false;

	} else if (!_was_in_deadband) {
		/* store altitude at which manual.x was inside deadBand
		 * The aircraft should immediately try to fly at this altitude
		 * as this is what the pilot expects when he moves the stick to the center */
		_hold_alt = _current_altitude;
		_althold_epv = _local_pos.epv;
		_was_in_deadband = true;
	}

	if (_vehicle_status.is_vtol) {
		if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING || _vehicle_status.in_transition_mode) {
			_hold_alt = _current_altitude;
		}
	}

}

bool
FixedwingPositionControl::in_takeoff_situation()
{
	// a VTOL does not need special takeoff handling
	if (_vehicle_status.is_vtol) {
		return false;
	}

	// in air for < 10s
	return (hrt_elapsed_time(&_time_went_in_air) < 10_s)
	       && (_current_altitude <= _takeoff_ground_alt + _param_fw_clmbout_diff.get());
}

void
FixedwingPositionControl::do_takeoff_help(float *hold_altitude, float *pitch_limit_min)
{
	/* demand "climbout_diff" m above ground if user switched into this mode during takeoff */
	if (in_takeoff_situation()) {
		*hold_altitude = _takeoff_ground_alt + _param_fw_clmbout_diff.get();
		*pitch_limit_min = radians(10.0f);
	}
}

bool
FixedwingPositionControl::control_position(const hrt_abstime &now, const Vector2d &curr_pos,
		const Vector2f &ground_speed,
		const position_setpoint_s &pos_sp_prev, const position_setpoint_s &pos_sp_curr, const position_setpoint_s &pos_sp_next)
{
	const float dt = math::constrain((now - _control_position_last_called) * 1e-6f, 0.01f, 0.05f);
	_control_position_last_called = now;

	_l1_control.set_dt(dt);

	/* only run position controller in fixed-wing mode and during transitions for VTOL */
	if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING && !_vehicle_status.in_transition_mode) {
		_control_mode_current = FW_POSCTRL_MODE_OTHER;
		return false;
	}

	bool setpoint = true;

	_att_sp.fw_control_yaw = false;		// by default we don't want yaw to be contoller directly with rudder
	_att_sp.apply_flaps = vehicle_attitude_setpoint_s::FLAPS_OFF;		// by default we don't use flaps

	Vector2f nav_speed_2d{ground_speed};

	if (_airspeed_valid) {
		// l1 navigation logic breaks down when wind speed exceeds max airspeed
		// compute 2D groundspeed from airspeed-heading projection
		const Vector2f air_speed_2d{_airspeed * cosf(_yaw), _airspeed * sinf(_yaw)};

		// angle between air_speed_2d and ground_speed
		const float air_gnd_angle = acosf((air_speed_2d * ground_speed) / (air_speed_2d.length() * ground_speed.length()));

		// if angle > 90 degrees or groundspeed is less than threshold, replace groundspeed with airspeed projection
		if ((fabsf(air_gnd_angle) > M_PI_2_F) || (ground_speed.length() < 3.0f)) {
			nav_speed_2d = air_speed_2d;
		}
	}

	/* no throttle limit as default */
	float throttle_max = 1.0f;

	/* save time when airplane is in air */
	if (!_was_in_air && !_landed) {
		_was_in_air = true;
		_time_went_in_air = now;
		_takeoff_ground_alt = _current_altitude;
	}

	/* reset flag when airplane landed */
	if (_landed) {
		_was_in_air = false;
	}

	/* Reset integrators if switching to this mode from a other mode in which posctl was not active */
	if (_control_mode_current == FW_POSCTRL_MODE_OTHER) {
		/* reset integrators */
		_tecs.reset_state();
	}

	if ((_control_mode.flag_control_auto_enabled || _control_mode.flag_control_offboard_enabled) && pos_sp_curr.valid) {
		/* AUTONOMOUS FLIGHT */

		_control_mode_current = FW_POSCTRL_MODE_AUTO;

		/* reset hold altitude */
		_hold_alt = _current_altitude;

		/* reset hold yaw */
		_hdg_hold_yaw = _yaw;

		/* get circle mode */
		bool was_circle_mode = _l1_control.circle_mode();

		/* restore TECS parameters, in case changed intermittently (e.g. in landing handling) */
		_tecs.set_speed_weight(_param_fw_t_spdweight.get());
		_tecs.set_height_error_time_constant(_param_fw_t_h_error_tc.get());

		Vector2d curr_wp{0, 0};
		Vector2d prev_wp{0, 0};

		if (_vehicle_status.in_transition_to_fw) {

			if (!PX4_ISFINITE(_transition_waypoint(0))) {
				double lat_transition, lon_transition;
				// create a virtual waypoint HDG_HOLD_DIST_NEXT meters in front of the vehicle which the L1 controller can track
				// during the transition
				waypoint_from_heading_and_distance(_current_latitude, _current_longitude, _yaw, HDG_HOLD_DIST_NEXT, &lat_transition,
								   &lon_transition);

				_transition_waypoint(0) = lat_transition;
				_transition_waypoint(1) = lon_transition;
			}


			curr_wp = prev_wp = _transition_waypoint;

		} else {
			/* current waypoint (the one currently heading for) */
			curr_wp = Vector2d(pos_sp_curr.lat, pos_sp_curr.lon);

			if (pos_sp_prev.valid) {
				prev_wp(0) = pos_sp_prev.lat;
				prev_wp(1) = pos_sp_prev.lon;

			} else {
				/*
				 * No valid previous waypoint, go for the current wp.
				 * This is automatically handled by the L1 library.
				 */
				prev_wp(0) = pos_sp_curr.lat;
				prev_wp(1) = pos_sp_curr.lon;
			}


			/* reset transition waypoint, will be set upon entering front transition */
			_transition_waypoint(0) = static_cast<double>(NAN);
			_transition_waypoint(1) = static_cast<double>(NAN);
		}

		/* Initialize attitude controller integrator reset flags to 0 */
		_att_sp.roll_reset_integral = false;
		_att_sp.pitch_reset_integral = false;
		_att_sp.yaw_reset_integral = false;

		float mission_airspeed = _param_fw_airspd_trim.get();

		if (PX4_ISFINITE(pos_sp_curr.cruising_speed) &&
		    pos_sp_curr.cruising_speed > 0.1f) {

			mission_airspeed = pos_sp_curr.cruising_speed;
		}

		float mission_throttle = _param_fw_thr_cruise.get();

		if (PX4_ISFINITE(pos_sp_curr.cruising_throttle) &&
		    pos_sp_curr.cruising_throttle >= 0.0f) {
			mission_throttle = pos_sp_curr.cruising_throttle;
		}

		float tecs_fw_thr_min;
		float tecs_fw_thr_max;
		float tecs_fw_mission_throttle;

		if (mission_throttle < _param_fw_thr_min.get()) {
			/* enable gliding with this waypoint */
			_tecs.set_speed_weight(2.0f);
			tecs_fw_thr_min = 0.0;
			tecs_fw_thr_max = 0.0;
			tecs_fw_mission_throttle = 0.0;

		} else {
			tecs_fw_thr_min = _param_fw_thr_min.get();
			tecs_fw_thr_max = _param_fw_thr_max.get();
			tecs_fw_mission_throttle = mission_throttle;
		}

		const float acc_rad = _l1_control.switch_distance(500.0f);

		uint8_t position_sp_type = pos_sp_curr.type;

		if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF) {
			// TAKEOFF: handle like a regular POSITION setpoint if already flying
			if (!in_takeoff_situation() && (_airspeed >= _param_fw_airspd_min.get() || !_airspeed_valid)) {
				// SETPOINT_TYPE_TAKEOFF -> SETPOINT_TYPE_POSITION
				position_sp_type = position_setpoint_s::SETPOINT_TYPE_POSITION;
			}

		} else if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_POSITION
			   || pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_LOITER) {

			float dist_xy = -1.f;
			float dist_z = -1.f;

			const float dist = get_distance_to_point_global_wgs84(
						   (double)curr_wp(0), (double)curr_wp(1), pos_sp_curr.alt,
						   _current_latitude, _current_longitude, _current_altitude,
						   &dist_xy, &dist_z);

			if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_POSITION) {
				// POSITION: achieve position setpoint altitude via loiter
				// close to waypoint, but altitude error greater than twice acceptance
				if ((dist >= 0.f)
				    && (dist_z > 2.f * _param_fw_clmbout_diff.get())
				    && (dist_xy < 2.f * math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius)))) {
					// SETPOINT_TYPE_POSITION -> SETPOINT_TYPE_LOITER
					position_sp_type = position_setpoint_s::SETPOINT_TYPE_LOITER;
				}

			} else if (pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_LOITER) {
				// LOITER: use SETPOINT_TYPE_POSITION to get to SETPOINT_TYPE_LOITER
				if ((dist >= 0.f)
				    && (dist_z > 2.f * _param_fw_clmbout_diff.get())
				    && (dist_xy > 2.f * math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius)))) {
					// SETPOINT_TYPE_LOITER -> SETPOINT_TYPE_POSITION
					position_sp_type = position_setpoint_s::SETPOINT_TYPE_POSITION;
				}
			}
		}

		_type = position_sp_type;


		if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_IDLE) {
			_att_sp.thrust_body[0] = 0.0f;
			_att_sp.roll_body = 0.0f;
			_att_sp.pitch_body = radians(_param_fw_psp_off.get());

		} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_POSITION) {
			// waypoint is a plain navigation waypoint
			float position_sp_alt = pos_sp_curr.alt;

			// Altitude first order hold (FOH)
			if (pos_sp_prev.valid && PX4_ISFINITE(pos_sp_prev.alt) &&
			    ((pos_sp_prev.type == position_setpoint_s::SETPOINT_TYPE_POSITION) ||
			     (pos_sp_prev.type == position_setpoint_s::SETPOINT_TYPE_LOITER) ||
			     (pos_sp_prev.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF))
			   ) {
				const float d_curr_prev = get_distance_to_next_waypoint((double)curr_wp(0), (double)curr_wp(1),
							  pos_sp_prev.lat, pos_sp_prev.lon);

				// Do not try to find a solution if the last waypoint is inside the acceptance radius of the current one
				if (d_curr_prev > math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius))) {
					// Calculate distance to current waypoint
					const float d_curr = get_distance_to_next_waypoint((double)curr_wp(0), (double)curr_wp(1),
							     _current_latitude, _current_longitude);

					// Save distance to waypoint if it is the smallest ever achieved, however make sure that
					// _min_current_sp_distance_xy is never larger than the distance between the current and the previous wp
					_min_current_sp_distance_xy = math::min(math::min(d_curr, _min_current_sp_distance_xy), d_curr_prev);

					// if the minimal distance is smaller than the acceptance radius, we should be at waypoint alt
					// navigator will soon switch to the next waypoint item (if there is one) as soon as we reach this altitude
					if (_min_current_sp_distance_xy > math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius))) {
						// The setpoint is set linearly and such that the system reaches the current altitude at the acceptance
						// radius around the current waypoint
						const float delta_alt = (pos_sp_curr.alt - pos_sp_prev.alt);
						const float grad = -delta_alt / (d_curr_prev - math::max(acc_rad, fabsf(pos_sp_curr.loiter_radius)));
						const float a = pos_sp_prev.alt - grad * d_curr_prev;

						position_sp_alt = a + grad * _min_current_sp_distance_xy;
					}
				}
			}

			_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, nav_speed_2d);
			_att_sp.roll_body = _l1_control.get_roll_setpoint();
			_att_sp.yaw_body = _l1_control.nav_bearing();

			tecs_update_pitch_throttle(now, position_sp_alt,
						   calculate_target_airspeed(mission_airspeed, ground_speed),
						   radians(_param_fw_p_lim_min.get()),
						   radians(_param_fw_p_lim_max.get()),
						   tecs_fw_thr_min,
						   tecs_fw_thr_max,
						   tecs_fw_mission_throttle,
						   false,
						   radians(_param_fw_p_lim_min.get()));


		} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_LOITER) {
			/* waypoint is a loiter waypoint */
			float loiter_radius = pos_sp_curr.loiter_radius;
			uint8_t loiter_direction = pos_sp_curr.loiter_direction;

			if (fabsf(pos_sp_curr.loiter_radius) < FLT_EPSILON) {
				loiter_radius = _param_nav_loiter_rad.get();
				loiter_direction = (loiter_radius > 0) ? 1 : -1;

			}

			_l1_control.navigate_loiter(curr_wp, curr_pos, loiter_radius, loiter_direction, nav_speed_2d);

			_att_sp.roll_body = _l1_control.get_roll_setpoint();
			_att_sp.yaw_body = _l1_control.nav_bearing();

			float alt_sp = pos_sp_curr.alt;

			if (pos_sp_next.type == position_setpoint_s::SETPOINT_TYPE_LAND && pos_sp_next.valid
			    && _l1_control.circle_mode() && _param_fw_lnd_earlycfg.get()) {
				// We're in a loiter directly before a landing WP. Enable our landing configuration (flaps,
				// landing airspeed and potentially tighter altitude control) already such that we don't
				// have to do this switch (which can cause significant altitude errors) close to the ground.
				_tecs.set_height_error_time_constant(_param_fw_thrtc_sc.get() * _param_fw_t_h_error_tc.get());
				mission_airspeed = _param_fw_lnd_airspd_sc.get() * _param_fw_airspd_min.get();
				_att_sp.apply_flaps = true;
			}

			if (in_takeoff_situation()) {
				alt_sp = max(alt_sp, _takeoff_ground_alt + _param_fw_clmbout_diff.get());
				_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-5.0f), radians(5.0f));
			}

			if (_land_abort) {
				if (pos_sp_curr.alt - _current_altitude  < _param_fw_clmbout_diff.get()) {
					// aborted landing complete, normal loiter over landing point
					abort_landing(false);

				} else {
					// continue straight until vehicle has sufficient altitude
					_att_sp.roll_body = 0.0f;
				}

				_tecs.set_height_error_time_constant(_param_fw_thrtc_sc.get() * _param_fw_t_h_error_tc.get());
			}

			tecs_update_pitch_throttle(now, alt_sp,
						   calculate_target_airspeed(mission_airspeed, ground_speed),
						   radians(_param_fw_p_lim_min.get()),
						   radians(_param_fw_p_lim_max.get()),
						   tecs_fw_thr_min,
						   tecs_fw_thr_max,
						   tecs_fw_mission_throttle,
						   false,
						   radians(_param_fw_p_lim_min.get()));

		} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_LAND) {
			control_landing(now, curr_pos, ground_speed, pos_sp_prev, pos_sp_curr);

		} else if (position_sp_type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF) {
			control_takeoff(now, curr_pos, ground_speed, pos_sp_prev, pos_sp_curr);
		}

		/* reset landing state */
		if (position_sp_type != position_setpoint_s::SETPOINT_TYPE_LAND) {
			reset_landing_state();
		}

		/* reset takeoff/launch state */
		if (position_sp_type != position_setpoint_s::SETPOINT_TYPE_TAKEOFF) {
			reset_takeoff_state();
		}

		if (was_circle_mode && !_l1_control.circle_mode()) {
			/* just kicked out of loiter, reset roll integrals */
			_att_sp.roll_reset_integral = true;
		}

	} else if (_control_mode.flag_control_velocity_enabled &&
		   _control_mode.flag_control_altitude_enabled) {
		/* POSITION CONTROL: pitch stick moves altitude setpoint, throttle stick sets airspeed,
		   heading is set to a distant waypoint */

		if (_control_mode_current != FW_POSCTRL_MODE_POSITION) {
			/* Need to init because last loop iteration was in a different mode */
			_hold_alt = _current_altitude;
			_hdg_hold_yaw = _yaw;
			_hdg_hold_enabled = false; // this makes sure the waypoints are reset below
			_yaw_lock_engaged = false;

			/* reset setpoints from other modes (auto) otherwise we won't
			 * level out without new manual input */
			_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
			_att_sp.yaw_body = 0;
		}

		_control_mode_current = FW_POSCTRL_MODE_POSITION;

		float altctrl_airspeed = get_demanded_airspeed();

		/* update desired altitude based on user pitch stick input */
		update_desired_altitude(dt);

		// if we assume that user is taking off then help by demanding altitude setpoint well above ground
		// and set limit to pitch angle to prevent steering into ground
		// this will only affect planes and not VTOL
		float pitch_limit_min = _param_fw_p_lim_min.get();
		do_takeoff_help(&_hold_alt, &pitch_limit_min);

		/* throttle limiting */
		throttle_max = _param_fw_thr_max.get();

		if (_landed && (fabsf(_manual_control_setpoint_airspeed) < THROTTLE_THRESH)) {
			throttle_max = 0.0f;
		}

		tecs_update_pitch_throttle(now, _hold_alt,
					   altctrl_airspeed,
					   radians(_param_fw_p_lim_min.get()),
					   radians(_param_fw_p_lim_max.get()),
					   _param_fw_thr_min.get(),
					   throttle_max,
					   _param_fw_thr_cruise.get(),
					   false,
					   pitch_limit_min,
					   tecs_status_s::TECS_MODE_NORMAL);

		/* heading control */
		if (fabsf(_manual_control_setpoint.y) < HDG_HOLD_MAN_INPUT_THRESH &&
		    fabsf(_manual_control_setpoint.r) < HDG_HOLD_MAN_INPUT_THRESH) {

			/* heading / roll is zero, lock onto current heading */
			if (fabsf(_yawrate) < HDG_HOLD_YAWRATE_THRESH && !_yaw_lock_engaged) {
				// little yaw movement, lock to current heading
				_yaw_lock_engaged = true;

			}

			/* user tries to do a takeoff in heading hold mode, reset the yaw setpoint on every iteration
			  to make sure the plane does not start rolling
			*/
			if (in_takeoff_situation()) {
				_hdg_hold_enabled = false;
				_yaw_lock_engaged = true;
			}

			if (_yaw_lock_engaged) {

				/* just switched back from non heading-hold to heading hold */
				if (!_hdg_hold_enabled) {
					_hdg_hold_enabled = true;
					_hdg_hold_yaw = _yaw;

					get_waypoint_heading_distance(_hdg_hold_yaw, _hdg_hold_prev_wp, _hdg_hold_curr_wp, true);
				}

				/* we have a valid heading hold position, are we too close? */
				float dist = get_distance_to_next_waypoint(_current_latitude, _current_longitude, _hdg_hold_curr_wp.lat,
						_hdg_hold_curr_wp.lon);

				if (dist < HDG_HOLD_REACHED_DIST) {
					get_waypoint_heading_distance(_hdg_hold_yaw, _hdg_hold_prev_wp, _hdg_hold_curr_wp, false);
				}

				Vector2d prev_wp{_hdg_hold_prev_wp.lat, _hdg_hold_prev_wp.lon};
				Vector2d curr_wp{_hdg_hold_curr_wp.lat, _hdg_hold_curr_wp.lon};

				/* populate l1 control setpoint */
				_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, ground_speed);

				_att_sp.roll_body = _l1_control.get_roll_setpoint();
				_att_sp.yaw_body = _l1_control.nav_bearing();

				if (in_takeoff_situation()) {
					/* limit roll motion to ensure enough lift */
					_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-15.0f), radians(15.0f));
				}
			}
		}

		if (!_yaw_lock_engaged || fabsf(_manual_control_setpoint.y) >= HDG_HOLD_MAN_INPUT_THRESH ||
		    fabsf(_manual_control_setpoint.r) >= HDG_HOLD_MAN_INPUT_THRESH) {

			_hdg_hold_enabled = false;
			_yaw_lock_engaged = false;
			_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
			_att_sp.yaw_body = 0;
		}

	} else if (_control_mode.flag_control_altitude_enabled) {
		/* ALTITUDE CONTROL: pitch stick moves altitude setpoint, throttle stick sets airspeed */

		if (_control_mode_current != FW_POSCTRL_MODE_POSITION && _control_mode_current != FW_POSCTRL_MODE_ALTITUDE) {
			/* Need to init because last loop iteration was in a different mode */
			_hold_alt = _current_altitude;
		}

		_control_mode_current = FW_POSCTRL_MODE_ALTITUDE;

		/* Get demanded airspeed */
		float altctrl_airspeed = get_demanded_airspeed();

		/* update desired altitude based on user pitch stick input */
		update_desired_altitude(dt);

		// if we assume that user is taking off then help by demanding altitude setpoint well above ground
		// and set limit to pitch angle to prevent steering into ground
		// this will only affect planes and not VTOL
		float pitch_limit_min = _param_fw_p_lim_min.get();
		do_takeoff_help(&_hold_alt, &pitch_limit_min);

		/* throttle limiting */
		throttle_max = _param_fw_thr_max.get();

		if (_landed && (fabsf(_manual_control_setpoint_airspeed) < THROTTLE_THRESH)) {
			throttle_max = 0.0f;
		}

		tecs_update_pitch_throttle(now, _hold_alt,
					   altctrl_airspeed,
					   radians(_param_fw_p_lim_min.get()),
					   radians(_param_fw_p_lim_max.get()),
					   _param_fw_thr_min.get(),
					   throttle_max,
					   _param_fw_thr_cruise.get(),
					   false,
					   pitch_limit_min,
					   tecs_status_s::TECS_MODE_NORMAL);

		_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());
		_att_sp.yaw_body = 0;

	} else {
		_control_mode_current = FW_POSCTRL_MODE_OTHER;

		/* do not publish the setpoint */
		setpoint = false;

		// reset hold altitude
		_hold_alt = _current_altitude;

		/* reset landing and takeoff state */
		if (!_last_manual) {
			reset_landing_state();
			reset_takeoff_state();
		}
	}

	/* Copy thrust output for publication */
	if (_control_mode_current == FW_POSCTRL_MODE_AUTO && // launchdetector only available in auto
	    pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF &&
	    _launch_detection_state != LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS &&
	    !_runway_takeoff.runwayTakeoffEnabled()) {

		/* making sure again that the correct thrust is used,
		 * without depending on library calls for safety reasons.
		   the pre-takeoff throttle and the idle throttle normally map to the same parameter. */
		_att_sp.thrust_body[0] = _param_fw_thr_idle.get();

	} else if (_control_mode_current == FW_POSCTRL_MODE_AUTO &&
		   pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF &&
		   _runway_takeoff.runwayTakeoffEnabled()) {

		_att_sp.thrust_body[0] = _runway_takeoff.getThrottle(now, min(get_tecs_thrust(), throttle_max));

	} else if (_control_mode_current == FW_POSCTRL_MODE_AUTO &&
		   pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_IDLE) {

		_att_sp.thrust_body[0] = 0.0f;

	} else if (_control_mode_current == FW_POSCTRL_MODE_OTHER) {
		_att_sp.thrust_body[0] = min(_att_sp.thrust_body[0], _param_fw_thr_max.get());

	} else {
		/* Copy thrust and pitch values from tecs */
		if (_landed) {
			// when we are landed state we want the motor to spin at idle speed
			_att_sp.thrust_body[0] = min(_param_fw_thr_idle.get(), throttle_max);

		} else {
			_att_sp.thrust_body[0] = min(get_tecs_thrust(), throttle_max);
		}
	}

	// decide when to use pitch setpoint from TECS because in some cases pitch
	// setpoint is generated by other means
	bool use_tecs_pitch = true;

	// auto runway takeoff
	use_tecs_pitch &= !(_control_mode_current == FW_POSCTRL_MODE_AUTO &&
			    pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_TAKEOFF &&
			    (_launch_detection_state == LAUNCHDETECTION_RES_NONE || _runway_takeoff.runwayTakeoffEnabled()));

	// flaring during landing
	use_tecs_pitch &= !(pos_sp_curr.type == position_setpoint_s::SETPOINT_TYPE_LAND && _land_noreturn_vertical);

	// manual attitude control
	use_tecs_pitch &= !(_control_mode_current == FW_POSCTRL_MODE_OTHER);

	if (use_tecs_pitch) {
		_att_sp.pitch_body = get_tecs_pitch();
	}

	if (_control_mode.flag_control_position_enabled) {
		_last_manual = false;

	} else {
		_last_manual = true;
	}

	return setpoint;
}

void
FixedwingPositionControl::control_takeoff(const hrt_abstime &now, const Vector2d &curr_pos,
		const Vector2f &ground_speed, const position_setpoint_s &pos_sp_prev, const position_setpoint_s &pos_sp_curr)
{
	/* current waypoint (the one currently heading for) */
	Vector2d curr_wp(pos_sp_curr.lat, pos_sp_curr.lon);
	Vector2d prev_wp{0, 0}; /* previous waypoint */

	if (pos_sp_prev.valid) {
		prev_wp(0) = pos_sp_prev.lat;
		prev_wp(1) = pos_sp_prev.lon;

	} else {
		/*
		 * No valid previous waypoint, go for the current wp.
		 * This is automatically handled by the L1 library.
		 */
		prev_wp(0) = pos_sp_curr.lat;
		prev_wp(1) = pos_sp_curr.lon;
	}

	// apply flaps for takeoff according to the corresponding scale factor set
	// via FW_FLAPS_TO_SCL
	_att_sp.apply_flaps = vehicle_attitude_setpoint_s::FLAPS_TAKEOFF;

	// continuously reset launch detection and runway takeoff until armed
	if (!_control_mode.flag_armed) {
		_launchDetector.reset();
		_launch_detection_state = LAUNCHDETECTION_RES_NONE;
		_launch_detection_notify = 0;
	}

	if (_runway_takeoff.runwayTakeoffEnabled()) {
		if (!_runway_takeoff.isInitialized()) {
			_runway_takeoff.init(now, _yaw, _current_latitude, _current_longitude);

			/* need this already before takeoff is detected
			 * doesn't matter if it gets reset when takeoff is detected eventually */
			_takeoff_ground_alt = _current_altitude;

			mavlink_log_info(&_mavlink_log_pub, "Takeoff on runway");
		}

		float terrain_alt = get_terrain_altitude_takeoff(_takeoff_ground_alt);

		// update runway takeoff helper
		_runway_takeoff.update(now, _airspeed, _current_altitude - terrain_alt,
				       _current_latitude, _current_longitude, &_mavlink_log_pub);

		/*
		 * Update navigation: _runway_takeoff returns the start WP according to mode and phase.
		 * If we use the navigator heading or not is decided later.
		 */
		_l1_control.navigate_waypoints(_runway_takeoff.getStartWP(), curr_wp, curr_pos, ground_speed);

		// update tecs
		const float takeoff_pitch_max_deg = _runway_takeoff.getMaxPitch(_param_fw_p_lim_max.get());

		tecs_update_pitch_throttle(now, pos_sp_curr.alt,
					   calculate_target_airspeed(_runway_takeoff.getMinAirspeedScaling() * _param_fw_airspd_min.get(), ground_speed),
					   radians(_param_fw_p_lim_min.get()),
					   radians(takeoff_pitch_max_deg),
					   _param_fw_thr_min.get(),
					   _param_fw_thr_max.get(), // XXX should we also set runway_takeoff_throttle here?
					   _param_fw_thr_cruise.get(),
					   _runway_takeoff.climbout(),
					   radians(_runway_takeoff.getMinPitch(_takeoff_pitch_min.get(), _param_fw_p_lim_min.get())),
					   tecs_status_s::TECS_MODE_TAKEOFF);

		// assign values
		_att_sp.roll_body = _runway_takeoff.getRoll(_l1_control.get_roll_setpoint());
		_att_sp.yaw_body = _runway_takeoff.getYaw(_l1_control.nav_bearing());
		_att_sp.fw_control_yaw = _runway_takeoff.controlYaw();
		_att_sp.pitch_body = _runway_takeoff.getPitch(get_tecs_pitch());

		// reset integrals except yaw (which also counts for the wheel controller)
		_att_sp.roll_reset_integral = _runway_takeoff.resetIntegrators();
		_att_sp.pitch_reset_integral = _runway_takeoff.resetIntegrators();

	} else {
		/* Perform launch detection */
		if (_launchDetector.launchDetectionEnabled() &&
		    _launch_detection_state != LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS) {

			if (_control_mode.flag_armed) {
				/* Perform launch detection */

				/* Inform user that launchdetection is running every 4s */
				if ((now - _launch_detection_notify) > 4_s) {
					mavlink_log_critical(&_mavlink_log_pub, "Launch detection running");
					_launch_detection_notify = now;
				}

				/* Detect launch using body X (forward) acceleration */
				_launchDetector.update(now, _body_acceleration(0));

				/* update our copy of the launch detection state */
				_launch_detection_state = _launchDetector.getLaunchDetected();
			}

		} else	{
			/* no takeoff detection --> fly */
			_launch_detection_state = LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS;
		}

		/* Set control values depending on the detection state */
		if (_launch_detection_state != LAUNCHDETECTION_RES_NONE) {
			/* Launch has been detected, hence we have to control the plane. */

			_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, ground_speed);
			_att_sp.roll_body = _l1_control.get_roll_setpoint();
			_att_sp.yaw_body = _l1_control.nav_bearing();

			/* Select throttle: only in LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS we want to use
			 * full throttle, otherwise we use idle throttle */
			float takeoff_throttle = _param_fw_thr_max.get();

			if (_launch_detection_state != LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS) {
				takeoff_throttle = _param_fw_thr_idle.get();
			}

			/* select maximum pitch: the launchdetector may impose another limit for the pitch
			 * depending on the state of the launch */
			const float takeoff_pitch_max_deg = _launchDetector.getPitchMax(_param_fw_p_lim_max.get());
			const float altitude_error = pos_sp_curr.alt - _current_altitude;

			/* apply minimum pitch and limit roll if target altitude is not within climbout_diff meters */
			if (_param_fw_clmbout_diff.get() > 0.0f && altitude_error > _param_fw_clmbout_diff.get()) {
				/* enforce a minimum of 10 degrees pitch up on takeoff, or take parameter */
				tecs_update_pitch_throttle(now, pos_sp_curr.alt,
							   _param_fw_airspd_trim.get(),
							   radians(_param_fw_p_lim_min.get()),
							   radians(takeoff_pitch_max_deg),
							   _param_fw_thr_min.get(),
							   takeoff_throttle,
							   _param_fw_thr_cruise.get(),
							   true,
							   radians(_takeoff_pitch_min.get()),
							   tecs_status_s::TECS_MODE_TAKEOFF);

				/* limit roll motion to ensure enough lift */
				_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-15.0f), radians(15.0f));

			} else {
				tecs_update_pitch_throttle(now, pos_sp_curr.alt,
							   calculate_target_airspeed(_param_fw_airspd_trim.get(), ground_speed),
							   radians(_param_fw_p_lim_min.get()),
							   radians(_param_fw_p_lim_max.get()),
							   _param_fw_thr_min.get(),
							   takeoff_throttle,
							   _param_fw_thr_cruise.get(),
							   false,
							   radians(_param_fw_p_lim_min.get()));
			}

		} else {
			/* Tell the attitude controller to stop integrating while we are waiting
			 * for the launch */
			_att_sp.roll_reset_integral = true;
			_att_sp.pitch_reset_integral = true;
			_att_sp.yaw_reset_integral = true;

			/* Set default roll and pitch setpoints during detection phase */
			_att_sp.roll_body = 0.0f;
			_att_sp.pitch_body = radians(_takeoff_pitch_min.get());
		}
	}
}

void
FixedwingPositionControl::control_landing(const hrt_abstime &now, const Vector2d &curr_pos,
		const Vector2f &ground_speed, const position_setpoint_s &pos_sp_prev, const position_setpoint_s &pos_sp_curr)
{
	/* current waypoint (the one currently heading for) */
	Vector2d curr_wp(pos_sp_curr.lat, pos_sp_curr.lon);
	Vector2d prev_wp{0, 0}; /* previous waypoint */

	if (pos_sp_prev.valid) {
		prev_wp(0) = pos_sp_prev.lat;
		prev_wp(1) = pos_sp_prev.lon;

	} else {
		/*
		 * No valid previous waypoint, go for the current wp.
		 * This is automatically handled by the L1 library.
		 */
		prev_wp(0) = pos_sp_curr.lat;
		prev_wp(1) = pos_sp_curr.lon;
	}

	// apply full flaps for landings. this flag will also trigger the use of flaperons
	// if they have been enabled using the corresponding parameter
	_att_sp.apply_flaps = vehicle_attitude_setpoint_s::FLAPS_LAND;

	// Enable tighter altitude control for landings
	_tecs.set_height_error_time_constant(_param_fw_thrtc_sc.get() * _param_fw_t_h_error_tc.get());

	// save time at which we started landing and reset abort_landing
	if (_time_started_landing == 0) {
		reset_landing_state();
		_time_started_landing = now;
	}

	const float bearing_airplane_currwp = get_bearing_to_next_waypoint((double)curr_pos(0), (double)curr_pos(1),
					      (double)curr_wp(0), (double)curr_wp(1));

	float bearing_lastwp_currwp = bearing_airplane_currwp;

	if (pos_sp_prev.valid) {
		bearing_lastwp_currwp = get_bearing_to_next_waypoint((double)prev_wp(0), (double)prev_wp(1), (double)curr_wp(0),
					(double)curr_wp(1));
	}

	/* Horizontal landing control */
	/* switch to heading hold for the last meters, continue heading hold after */
	float wp_distance = get_distance_to_next_waypoint((double)curr_pos(0), (double)curr_pos(1), (double)curr_wp(0),
			    (double)curr_wp(1));

	/* calculate a waypoint distance value which is 0 when the aircraft is behind the waypoint */
	float wp_distance_save = wp_distance;

	if (fabsf(wrap_pi(bearing_airplane_currwp - bearing_lastwp_currwp)) >= radians(90.0f)) {
		wp_distance_save = 0.0f;
	}

	// create virtual waypoint which is on the desired flight path but
	// some distance behind landing waypoint. This will make sure that the plane
	// will always follow the desired flight path even if we get close or past
	// the landing waypoint
	if (pos_sp_prev.valid) {
		double lat = pos_sp_curr.lat;
		double lon = pos_sp_curr.lon;

		create_waypoint_from_line_and_dist(pos_sp_curr.lat, pos_sp_curr.lon,
						   pos_sp_prev.lat, pos_sp_prev.lon, -1000.0f, &lat, &lon);

		curr_wp(0) = lat;
		curr_wp(1) = lon;
	}

	// we want the plane to keep tracking the desired flight path until we start flaring
	// if we go into heading hold mode earlier then we risk to be pushed away from the runway by cross winds
	if ((_param_fw_lnd_hhdist.get() > 0.0f) && !_land_noreturn_horizontal &&
	    ((wp_distance < _param_fw_lnd_hhdist.get()) || _land_noreturn_vertical)) {

		if (pos_sp_prev.valid) {
			/* heading hold, along the line connecting this and the last waypoint */
			_target_bearing = bearing_lastwp_currwp;

		} else {
			_target_bearing = _yaw;
		}

		_land_noreturn_horizontal = true;
		mavlink_log_info(&_mavlink_log_pub, "Landing, heading hold");
	}

	if (_land_noreturn_horizontal) {
		// heading hold
		_l1_control.navigate_heading(_target_bearing, _yaw, ground_speed);

	} else {
		// normal navigation
		_l1_control.navigate_waypoints(prev_wp, curr_wp, curr_pos, ground_speed);
	}

	_att_sp.roll_body = _l1_control.get_roll_setpoint();
	_att_sp.yaw_body = _l1_control.nav_bearing();

	if (_land_noreturn_horizontal) {
		/* limit roll motion to prevent wings from touching the ground first */
		_att_sp.roll_body = constrain(_att_sp.roll_body, radians(-10.0f), radians(10.0f));
	}

	/* Vertical landing control */
	/* apply minimum pitch (flare) and limit roll if close to touch down, altitude error is negative (going down) */

	// default to no terrain estimation, just use landing waypoint altitude
	float terrain_alt = pos_sp_curr.alt;

	if (_param_fw_lnd_useter.get() == 1) {
		if (_local_pos.dist_bottom_valid) {
			// all good, have valid terrain altitude
			float terrain_vpos = _local_pos.dist_bottom + _local_pos.z;
			terrain_alt = (_local_pos.ref_alt - terrain_vpos);
			_t_alt_prev_valid = terrain_alt;
			_time_last_t_alt = now;

		} else if (_time_last_t_alt == 0) {
			// we have started landing phase but don't have valid terrain
			// wait for some time, maybe we will soon get a valid estimate
			// until then just use the altitude of the landing waypoint
			if ((now - _time_started_landing) < 10_s) {
				terrain_alt = pos_sp_curr.alt;

			} else {
				// still no valid terrain, abort landing
				terrain_alt = pos_sp_curr.alt;
				abort_landing(true);
			}

		} else if ((!_local_pos.dist_bottom_valid && (now - _time_last_t_alt) < T_ALT_TIMEOUT)
			   || _land_noreturn_vertical) {
			// use previous terrain estimate for some time and hope to recover
			// if we are already flaring (land_noreturn_vertical) then just
			//  go with the old estimate
			terrain_alt = _t_alt_prev_valid;

		} else {
			// terrain alt was not valid for long time, abort landing
			terrain_alt = _t_alt_prev_valid;
			abort_landing(true);
		}
	}

	/* Check if we should start flaring with a vertical and a
	 * horizontal limit (with some tolerance)
	 * The horizontal limit is only applied when we are in front of the wp
	 */
	if ((_current_altitude < terrain_alt + _landingslope.flare_relative_alt()) ||
	    _land_noreturn_vertical) {  //checking for land_noreturn to avoid unwanted climb out

		/* land with minimal speed */

		/* force TECS to only control speed with pitch, altitude is only implicitly controlled now */
		// _tecs.set_speed_weight(2.0f);

		/* kill the throttle if param requests it */
		float throttle_max = _param_fw_thr_max.get();

		/* enable direct yaw control using rudder/wheel */
		if (_land_noreturn_horizontal) {
			_att_sp.yaw_body = _target_bearing;
			_att_sp.fw_control_yaw = true;
		}

		if (((_current_altitude < terrain_alt + _landingslope.motor_lim_relative_alt()) &&
		     (wp_distance_save < _landingslope.flare_length() + 5.0f)) || // Only kill throttle when close to WP
		    _land_motor_lim) {
			throttle_max = min(throttle_max, _param_fw_thr_lnd_max.get());

			if (!_land_motor_lim) {
				_land_motor_lim  = true;
				mavlink_log_info(&_mavlink_log_pub, "Landing, limiting throttle");
			}
		}

		float flare_curve_alt_rel = _landingslope.getFlareCurveRelativeAltitudeSave(wp_distance, bearing_lastwp_currwp,
					    bearing_airplane_currwp);

		/* avoid climbout */
		if ((_flare_curve_alt_rel_last < flare_curve_alt_rel && _land_noreturn_vertical) || _land_stayonground) {
			flare_curve_alt_rel = 0.0f; // stay on ground
			_land_stayonground = true;
		}

		const float airspeed_land = _param_fw_lnd_airspd_sc.get() * _param_fw_airspd_min.get();
		const float throttle_land = _param_fw_thr_min.get() + (_param_fw_thr_max.get() - _param_fw_thr_min.get()) * 0.1f;

		tecs_update_pitch_throttle(now, terrain_alt + flare_curve_alt_rel,
					   calculate_target_airspeed(airspeed_land, ground_speed),
					   radians(_param_fw_lnd_fl_pmin.get()),
					   radians(_param_fw_lnd_fl_pmax.get()),
					   0.0f,
					   throttle_max,
					   throttle_land,
					   false,
					   _land_motor_lim ? radians(_param_fw_lnd_fl_pmin.get()) : radians(_param_fw_p_lim_min.get()),
					   _land_motor_lim ? tecs_status_s::TECS_MODE_LAND_THROTTLELIM : tecs_status_s::TECS_MODE_LAND);

		if (!_land_noreturn_vertical) {
			// just started with the flaring phase
			_flare_pitch_sp = radians(_param_fw_psp_off.get());
			_flare_height = _current_altitude - terrain_alt;
			mavlink_log_info(&_mavlink_log_pub, "Landing, flaring");
			_land_noreturn_vertical = true;

		} else {
			if (_local_pos.vz > 0.1f) {
				_flare_pitch_sp = radians(_param_fw_lnd_fl_pmin.get()) *
						  constrain((_flare_height - (_current_altitude - terrain_alt)) / _flare_height, 0.0f, 1.0f);
			}

			// otherwise continue using previous _flare_pitch_sp
		}

		_att_sp.pitch_body = _flare_pitch_sp;
		_flare_curve_alt_rel_last = flare_curve_alt_rel;

	} else {

		/* intersect glide slope:
		 * minimize speed to approach speed
		 * if current position is higher than the slope follow the glide slope (sink to the
		 * glide slope)
		 * also if the system captures the slope it should stay
		 * on the slope (bool land_onslope)
		 * if current position is below the slope continue at previous wp altitude
		 * until the intersection with slope
		 * */

		float altitude_desired = terrain_alt;

		const float landing_slope_alt_rel_desired = _landingslope.getLandingSlopeRelativeAltitudeSave(wp_distance,
				bearing_lastwp_currwp, bearing_airplane_currwp);

		if (_current_altitude > terrain_alt + landing_slope_alt_rel_desired || _land_onslope) {
			/* stay on slope */
			altitude_desired = terrain_alt + landing_slope_alt_rel_desired;

			if (!_land_onslope) {
				mavlink_log_info(&_mavlink_log_pub, "Landing, on slope");
				_land_onslope = true;
			}

		} else {
			/* continue horizontally */
			if (pos_sp_prev.valid) {
				altitude_desired = pos_sp_prev.alt;

			} else {
				altitude_desired = _current_altitude;
			}
		}

		const float airspeed_approach = _param_fw_lnd_airspd_sc.get() * _param_fw_airspd_min.get();

		tecs_update_pitch_throttle(now, altitude_desired,
					   calculate_target_airspeed(airspeed_approach, ground_speed),
					   radians(_param_fw_p_lim_min.get()),
					   radians(_param_fw_p_lim_max.get()),
					   _param_fw_thr_min.get(),
					   _param_fw_thr_max.get(),
					   _param_fw_thr_cruise.get(),
					   false,
					   radians(_param_fw_p_lim_min.get()));
	}
}

float
FixedwingPositionControl::get_tecs_pitch()
{
	if (_is_tecs_running) {
		return _tecs.get_pitch_setpoint() + radians(_param_fw_psp_off.get());
	}

	// return level flight pitch offset to prevent stale tecs state when it's not running
	return radians(_param_fw_psp_off.get());
}

float
FixedwingPositionControl::get_tecs_thrust()
{
	if (_is_tecs_running) {
		return _tecs.get_throttle_setpoint();
	}

	// return 0 to prevent stale tecs state when it's not running
	return 0.0f;
}

void
FixedwingPositionControl::Run()
{
	if (should_exit()) {
		_local_pos_sub.unregisterCallback();
		exit_and_cleanup();
		return;
	}

	perf_begin(_loop_perf);

	/* only run controller if position changed */

	if (_local_pos_sub.update(&_local_pos)) {

		// check for parameter updates
		if (_parameter_update_sub.updated()) {
			// clear update
			parameter_update_s pupdate;
			_parameter_update_sub.copy(&pupdate);

			// update parameters from storage
			parameters_update();
		}

		vehicle_global_position_s gpos;

		if (_global_pos_sub.update(&gpos)) {
			_current_latitude = gpos.lat;
			_current_longitude = gpos.lon;
		}

		_current_altitude = -_local_pos.z + _local_pos.ref_alt; // Altitude AMSL in meters

		// handle estimator reset events. we only adjust setpoins for manual modes
		if (_control_mode.flag_control_manual_enabled) {
			if (_control_mode.flag_control_altitude_enabled && _local_pos.vz_reset_counter != _alt_reset_counter) {
				_hold_alt += -_local_pos.delta_z;
				// make TECS accept step in altitude and demanded altitude
				_tecs.handle_alt_step(-_local_pos.delta_z, _current_altitude);
			}

			// adjust navigation waypoints in position control mode
			if (_control_mode.flag_control_altitude_enabled && _control_mode.flag_control_velocity_enabled
			    && _local_pos.vxy_reset_counter != _pos_reset_counter) {

				// reset heading hold flag, which will re-initialise position control
				_hdg_hold_enabled = false;
			}
		}

		// update the reset counters in any case
		_alt_reset_counter = _local_pos.vz_reset_counter;
		_pos_reset_counter = _local_pos.vxy_reset_counter;


		if (_control_mode.flag_control_offboard_enabled) {
			// Convert Local setpoints to global setpoints
			if (!map_projection_initialized(&_global_local_proj_ref)
			    || (_global_local_proj_ref.timestamp != _local_pos.ref_timestamp)) {

				map_projection_init_timestamped(&_global_local_proj_ref, _local_pos.ref_lat, _local_pos.ref_lon,
								_local_pos.ref_timestamp);
				_global_local_alt0 = _local_pos.ref_alt;
			}

			vehicle_local_position_setpoint_s trajectory_setpoint;

			if (_trajectory_setpoint_sub.update(&trajectory_setpoint)) {
				if (PX4_ISFINITE(trajectory_setpoint.x) && PX4_ISFINITE(trajectory_setpoint.y) && PX4_ISFINITE(trajectory_setpoint.z)) {
					double lat;
					double lon;

					if (map_projection_reproject(&_global_local_proj_ref, trajectory_setpoint.x, trajectory_setpoint.y, &lat, &lon) == 0) {
						_pos_sp_triplet = {}; // clear any existing

						_pos_sp_triplet.timestamp = trajectory_setpoint.timestamp;
						_pos_sp_triplet.current.timestamp = trajectory_setpoint.timestamp;
						_pos_sp_triplet.current.valid = true;
						_pos_sp_triplet.current.type = position_setpoint_s::SETPOINT_TYPE_POSITION;
						_pos_sp_triplet.current.lat = lat;
						_pos_sp_triplet.current.lon = lon;
						_pos_sp_triplet.current.alt = _global_local_alt0 - trajectory_setpoint.z;
						_pos_sp_triplet.current.cruising_speed = NAN; // ignored
						_pos_sp_triplet.current.cruising_throttle = NAN; // ignored
					}

				} else {
					mavlink_log_critical(&_mavlink_log_pub, "Invalid offboard setpoint");
				}
			}

		} else {
			if (_pos_sp_triplet_sub.update(&_pos_sp_triplet)) {
				// reset the altitude foh (first order hold) logic
				_min_current_sp_distance_xy = FLT_MAX;
			}
		}

		airspeed_poll();
		manual_control_setpoint_poll();
		vehicle_attitude_poll();
		vehicle_command_poll();
		vehicle_control_mode_poll();

		if (_vehicle_land_detected_sub.updated()) {
			vehicle_land_detected_s vehicle_land_detected;

			if (_vehicle_land_detected_sub.update(&vehicle_land_detected)) {
				_landed = vehicle_land_detected.landed;
			}
		}

		_vehicle_status_sub.update(&_vehicle_status);

		Vector2d curr_pos(_current_latitude, _current_longitude);
		Vector2f ground_speed(_local_pos.vx, _local_pos.vy);

		/*
		 * Attempt to control position, on success (= sensors present and not in manual mode),
		 * publish setpoint.
		 */
		if (control_position(_local_pos.timestamp, curr_pos, ground_speed, _pos_sp_triplet.previous, _pos_sp_triplet.current,
				     _pos_sp_triplet.next)) {

			if (_control_mode.flag_control_manual_enabled) {
				_att_sp.roll_body = constrain(_att_sp.roll_body, -radians(_param_fw_man_r_max.get()),
							      radians(_param_fw_man_r_max.get()));
				_att_sp.pitch_body = constrain(_att_sp.pitch_body, -radians(_param_fw_man_p_max.get()),
							       radians(_param_fw_man_p_max.get()));
			}

			if (_control_mode.flag_control_position_enabled ||
			    _control_mode.flag_control_velocity_enabled ||
			    _control_mode.flag_control_acceleration_enabled ||
			    _control_mode.flag_control_altitude_enabled) {

				const Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
				q.copyTo(_att_sp.q_d);

				_att_sp.timestamp = hrt_absolute_time();
				_attitude_sp_pub.publish(_att_sp);

				// only publish status in full FW mode
				if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING
				    || _vehicle_status.in_transition_mode) {
					status_publish();

				}
			}
		}

		perf_end(_loop_perf);
	}
}

void
FixedwingPositionControl::reset_takeoff_state(bool force)
{
	// only reset takeoff if !armed or just landed
	if (!_control_mode.flag_armed || (_was_in_air && _landed) || force) {

		_runway_takeoff.reset();

		_launchDetector.reset();
		_launch_detection_state = LAUNCHDETECTION_RES_NONE;
		_launch_detection_notify = 0;

	} else {
		_launch_detection_state = LAUNCHDETECTION_RES_DETECTED_ENABLEMOTORS;
	}
}

void
FixedwingPositionControl::reset_landing_state()
{
	_time_started_landing = 0;

	// reset terrain estimation relevant values
	_time_last_t_alt = 0;

	_land_noreturn_horizontal = false;
	_land_noreturn_vertical = false;
	_land_stayonground = false;
	_land_motor_lim = false;
	_land_onslope = false;

	// reset abort land, unless loitering after an abort
	if (_land_abort && (_pos_sp_triplet.current.type != position_setpoint_s::SETPOINT_TYPE_LOITER)) {

		abort_landing(false);
	}
}

void
FixedwingPositionControl::tecs_update_pitch_throttle(const hrt_abstime &now, float alt_sp, float airspeed_sp,
		float pitch_min_rad, float pitch_max_rad,
		float throttle_min, float throttle_max, float throttle_cruise,
		bool climbout_mode, float climbout_pitch_min_rad,
		uint8_t mode)
{
	const float dt = math::constrain((now - _last_tecs_update) * 1e-6f, 0.01f, 0.05f);
	_last_tecs_update = now;

	// do not run TECS if we are not in air
	bool run_tecs = !_landed;

	// do not run TECS if vehicle is a VTOL and we are in rotary wing mode or in transition
	// (it should also not run during VTOL blending because airspeed is too low still)
	if (_vehicle_status.is_vtol) {
		if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING || _vehicle_status.in_transition_mode) {
			run_tecs = false;
		}

		if (_vehicle_status.in_transition_mode) {
			// we're in transition
			_was_in_transition = true;

			// set this to transition airspeed to init tecs correctly
			if (_param_fw_arsp_mode.get() == 1 && PX4_ISFINITE(_param_airspeed_trans)) {
				// some vtols fly without airspeed sensor
				_asp_after_transition = _param_airspeed_trans;

			} else {
				_asp_after_transition = _airspeed;
			}

			_asp_after_transition = constrain(_asp_after_transition, _param_fw_airspd_min.get(), _param_fw_airspd_max.get());

		} else if (_was_in_transition) {
			// after transition we ramp up desired airspeed from the speed we had coming out of the transition
			_asp_after_transition += dt * 2.0f; // increase 2m/s

			if (_asp_after_transition < airspeed_sp && _airspeed < airspeed_sp) {
				airspeed_sp = max(_asp_after_transition, _airspeed);

			} else {
				_was_in_transition = false;
				_asp_after_transition = 0.0f;
			}
		}
	}

	_is_tecs_running = run_tecs;

	if (!run_tecs) {
		// next time we run TECS we should reinitialize states
		_reinitialize_tecs = true;
		return;
	}

	if (_reinitialize_tecs) {
		_tecs.reset_state();
		_reinitialize_tecs = false;
	}

	if (_vehicle_status.engine_failure) {
		/* Force the slow downwards spiral */
		pitch_min_rad = radians(-1.0f);
		pitch_max_rad = radians(5.0f);
	}

	/* No underspeed protection in landing mode */
	_tecs.set_detect_underspeed_enabled(!(mode == tecs_status_s::TECS_MODE_LAND
					      || mode == tecs_status_s::TECS_MODE_LAND_THROTTLELIM));

	/* tell TECS to update its state, but let it know when it cannot actually control the plane */
	bool in_air_alt_control = (!_landed &&
				   (_control_mode.flag_control_auto_enabled ||
				    _control_mode.flag_control_velocity_enabled ||
				    _control_mode.flag_control_altitude_enabled));

	/* update TECS vehicle state estimates */
	_tecs.update_vehicle_state_estimates(_airspeed, _body_acceleration(0), (_local_pos.timestamp > 0), in_air_alt_control,
					     _current_altitude, _local_pos.vz);

	/* scale throttle cruise by baro pressure */
	if (_param_fw_thr_alt_scl.get() > FLT_EPSILON) {
		vehicle_air_data_s air_data;

		if (_vehicle_air_data_sub.copy(&air_data)) {
			if (PX4_ISFINITE(air_data.baro_pressure_pa) && PX4_ISFINITE(_param_fw_thr_alt_scl.get())) {
				// scale throttle as a function of sqrt(p0/p) (~ EAS -> TAS at low speeds and altitudes ignoring temperature)
				const float eas2tas = sqrtf(CONSTANTS_STD_PRESSURE_PA / air_data.baro_pressure_pa);
				const float scale = constrain((eas2tas - 1.0f) * _param_fw_thr_alt_scl.get() + 1.f, 1.f, 2.f);

				throttle_max = constrain(throttle_max * scale, throttle_min, 1.0f);
				throttle_cruise = constrain(throttle_cruise * scale, throttle_min + 0.01f, throttle_max - 0.01f);
			}
		}
	}

	_tecs.update_pitch_throttle(_pitch - radians(_param_fw_psp_off.get()),
				    _current_altitude, alt_sp,
				    airspeed_sp, _airspeed, _eas2tas,
				    climbout_mode,
				    climbout_pitch_min_rad - radians(_param_fw_psp_off.get()),
				    throttle_min, throttle_max, throttle_cruise,
				    pitch_min_rad - radians(_param_fw_psp_off.get()),
				    pitch_max_rad - radians(_param_fw_psp_off.get()));

	tecs_status_publish();
}

int FixedwingPositionControl::task_spawn(int argc, char *argv[])
{
	bool vtol = false;

	if (argc > 1) {
		if (strcmp(argv[1], "vtol") == 0) {
			vtol = true;
		}
	}

	FixedwingPositionControl *instance = new FixedwingPositionControl(vtol);

	if (instance) {
		_object.store(instance);
		_task_id = task_id_is_work_queue;

		if (instance->init()) {
			return PX4_OK;
		}

	} else {
		PX4_ERR("alloc failed");
	}

	delete instance;
	_object.store(nullptr);
	_task_id = -1;

	return PX4_ERROR;
}

int FixedwingPositionControl::custom_command(int argc, char *argv[])
{
	return print_usage("unknown command");
}

int FixedwingPositionControl::print_usage(const char *reason)
{
	if (reason) {
		PX4_WARN("%s\n", reason);
	}

	PRINT_MODULE_DESCRIPTION(
		R"DESCR_STR(
### Description
fw_pos_control_l1 is the fixed wing position controller.

)DESCR_STR");

	PRINT_MODULE_USAGE_NAME("fw_pos_control_l1", "controller");
	PRINT_MODULE_USAGE_COMMAND("start");
	PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
	PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

	return 0;
}

extern "C" __EXPORT int fw_pos_control_l1_main(int argc, char *argv[])
{
	return FixedwingPositionControl::main(argc, argv);
}