EKF2Selector.cpp
24.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "EKF2Selector.hpp"
using namespace time_literals;
using matrix::Quatf;
using matrix::Vector2f;
using math::constrain;
using math::max;
using math::radians;
EKF2Selector::EKF2Selector() :
ModuleParams(nullptr),
ScheduledWorkItem("ekf2_selector", px4::wq_configurations::nav_and_controllers)
{
}
EKF2Selector::~EKF2Selector()
{
Stop();
}
bool EKF2Selector::Start()
{
ScheduleNow();
return true;
}
void EKF2Selector::Stop()
{
for (int i = 0; i < EKF2_MAX_INSTANCES; i++) {
_instance[i].estimator_attitude_sub.unregisterCallback();
_instance[i].estimator_status_sub.unregisterCallback();
}
ScheduleClear();
}
bool EKF2Selector::SelectInstance(uint8_t ekf_instance)
{
if ((ekf_instance != INVALID_INSTANCE) && (ekf_instance != _selected_instance)) {
// update sensor_selection immediately
sensor_selection_s sensor_selection{};
sensor_selection.accel_device_id = _instance[ekf_instance].accel_device_id;
sensor_selection.gyro_device_id = _instance[ekf_instance].gyro_device_id;
sensor_selection.timestamp = hrt_absolute_time();
_sensor_selection_pub.publish(sensor_selection);
if (_selected_instance != INVALID_INSTANCE) {
// switch callback registration
_instance[_selected_instance].estimator_attitude_sub.unregisterCallback();
_instance[_selected_instance].estimator_status_sub.unregisterCallback();
if (!_instance[_selected_instance].healthy) {
const char *reason = nullptr;
if (_instance[_selected_instance].filter_fault) {
reason = "filter fault";
} else if (_instance[_selected_instance].timeout) {
reason = "timeout";
} else if (_gyro_fault_detected) {
reason = "gyro fault";
} else if (_accel_fault_detected) {
reason = "accel fault";
}
if (reason) {
PX4_WARN("primary EKF changed %d (%s) -> %d", _selected_instance, reason, ekf_instance);
}
}
}
_instance[ekf_instance].estimator_attitude_sub.registerCallback();
_instance[ekf_instance].estimator_status_sub.registerCallback();
_selected_instance = ekf_instance;
_instance_changed_count++;
_last_instance_change = sensor_selection.timestamp;
_instance[ekf_instance].time_last_selected = _last_instance_change;
// reset all relative test ratios
for (uint8_t i = 0; i < _available_instances; i++) {
_instance[i].relative_test_ratio = 0;
}
// publish new data immediately with resets
PublishVehicleAttitude(true);
PublishVehicleLocalPosition(true);
PublishVehicleGlobalPosition(true);
PublishWindEstimate(true);
return true;
}
return false;
}
bool EKF2Selector::UpdateErrorScores()
{
// first check imu inconsistencies
_gyro_fault_detected = false;
uint32_t faulty_gyro_id = 0;
_accel_fault_detected = false;
uint32_t faulty_accel_id = 0;
if (_sensors_status_imu.updated()) {
sensors_status_imu_s sensors_status_imu;
if (_sensors_status_imu.copy(&sensors_status_imu)) {
const float time_step_s = constrain((sensors_status_imu.timestamp - _last_update_us) * 1e-6f, 0.f, 0.02f);
_last_update_us = sensors_status_imu.timestamp;
{
const float angle_rate_threshold = radians(_param_ekf2_sel_imu_angle_rate.get());
const float angle_threshold = radians(_param_ekf2_sel_imu_angle.get());
uint8_t n_gyros = 0;
uint8_t n_gyro_exceedances = 0;
float largest_accumulated_gyro_error = 0.0f;
uint8_t largest_gyro_error_index = 0;
for (unsigned i = 0; i < IMU_STATUS_SIZE; i++) {
// check for gyros with excessive difference to mean using accumulated error
if (sensors_status_imu.gyro_device_ids[i] != 0) {
n_gyros++;
_accumulated_gyro_error[i] += (sensors_status_imu.gyro_inconsistency_rad_s[i] - angle_rate_threshold) * time_step_s;
_accumulated_gyro_error[i] = fmaxf(_accumulated_gyro_error[i], 0.f);
if (_accumulated_gyro_error[i] > angle_threshold) {
n_gyro_exceedances++;
}
if (_accumulated_gyro_error[i] > largest_accumulated_gyro_error) {
largest_accumulated_gyro_error = _accumulated_gyro_error[i];
largest_gyro_error_index = i;
}
} else {
// no sensor
_accumulated_gyro_error[i] = NAN;
}
}
if (n_gyro_exceedances > 0) {
if (n_gyros >= 3) {
// If there are 3 or more sensors, the one with the largest accumulated error is faulty
_gyro_fault_detected = true;
faulty_gyro_id = sensors_status_imu.gyro_device_ids[largest_gyro_error_index];
} else if (n_gyros == 2) {
// A fault is present, but the faulty sensor identity cannot be determined
_gyro_fault_detected = true;
}
}
}
{
const float accel_threshold = _param_ekf2_sel_imu_accel.get();
const float velocity_threshold = _param_ekf2_sel_imu_velocity.get();
uint8_t n_accels = 0;
uint8_t n_accel_exceedances = 0;
float largest_accumulated_accel_error = 0.0f;
uint8_t largest_accel_error_index = 0;
for (unsigned i = 0; i < IMU_STATUS_SIZE; i++) {
// check for accelerometers with excessive difference to mean using accumulated error
if (sensors_status_imu.accel_device_ids[i] != 0) {
n_accels++;
_accumulated_accel_error[i] += (sensors_status_imu.accel_inconsistency_m_s_s[i] - accel_threshold) * time_step_s;
_accumulated_accel_error[i] = fmaxf(_accumulated_accel_error[i], 0.f);
if (_accumulated_accel_error[i] > velocity_threshold) {
n_accel_exceedances++;
}
if (_accumulated_accel_error[i] > largest_accumulated_accel_error) {
largest_accumulated_accel_error = _accumulated_accel_error[i];
largest_accel_error_index = i;
}
} else {
// no sensor
_accumulated_accel_error[i] = NAN;
}
}
if (n_accel_exceedances > 0) {
if (n_accels >= 3) {
// If there are 3 or more sensors, the one with the largest accumulated error is faulty
_accel_fault_detected = true;
faulty_accel_id = sensors_status_imu.accel_device_ids[largest_accel_error_index];
} else if (n_accels == 2) {
// A fault is present, but the faulty sensor identity cannot be determined
_accel_fault_detected = true;
}
}
}
}
}
bool updated = false;
bool primary_updated = false;
// default estimator timeout
hrt_abstime status_timeout = 50_ms;
if (hrt_elapsed_time(&_attitude_last.timestamp) > FILTER_UPDATE_PERIOD) {
// much lower timeout if current primary estimator attitude isn't publishing
status_timeout = 2 * FILTER_UPDATE_PERIOD;
}
// calculate individual error scores
for (uint8_t i = 0; i < EKF2_MAX_INSTANCES; i++) {
const bool prev_healthy = _instance[i].healthy;
estimator_status_s status;
if (_instance[i].estimator_status_sub.update(&status)) {
_instance[i].timestamp_sample_last = status.timestamp_sample;
_instance[i].accel_device_id = status.accel_device_id;
_instance[i].gyro_device_id = status.gyro_device_id;
_instance[i].baro_device_id = status.baro_device_id;
_instance[i].mag_device_id = status.mag_device_id;
if ((i + 1) > _available_instances) {
_available_instances = i + 1;
updated = true;
}
if (i == _selected_instance) {
primary_updated = true;
}
const bool tilt_align = status.control_mode_flags & (1 << estimator_status_s::CS_TILT_ALIGN);
const bool yaw_align = status.control_mode_flags & (1 << estimator_status_s::CS_YAW_ALIGN);
float combined_test_ratio = 0;
if (tilt_align && yaw_align) {
combined_test_ratio = fmaxf(0.f, 0.5f * (status.vel_test_ratio + status.pos_test_ratio));
combined_test_ratio = fmaxf(combined_test_ratio, status.hgt_test_ratio);
}
_instance[i].combined_test_ratio = combined_test_ratio;
_instance[i].healthy = tilt_align && yaw_align && (status.filter_fault_flags == 0);
_instance[i].filter_fault = (status.filter_fault_flags != 0);
_instance[i].timeout = false;
if (!PX4_ISFINITE(_instance[i].relative_test_ratio)) {
_instance[i].relative_test_ratio = 0;
}
} else if (hrt_elapsed_time(&_instance[i].timestamp_sample_last) > status_timeout) {
_instance[i].healthy = false;
_instance[i].timeout = true;
}
// if the gyro used by the EKF is faulty, declare the EKF unhealthy without delay
if (_gyro_fault_detected && (faulty_gyro_id != 0) && (_instance[i].gyro_device_id == faulty_gyro_id)) {
_instance[i].healthy = false;
}
// if the accelerometer used by the EKF is faulty, declare the EKF unhealthy without delay
if (_accel_fault_detected && (faulty_accel_id != 0) && (_instance[i].accel_device_id == faulty_accel_id)) {
_instance[i].healthy = false;
}
if (prev_healthy != _instance[i].healthy) {
updated = true;
_selector_status_publish = true;
}
}
// update relative test ratios if primary has updated
if (primary_updated) {
for (uint8_t i = 0; i < _available_instances; i++) {
if (i != _selected_instance) {
const float error_delta = _instance[i].combined_test_ratio - _instance[_selected_instance].combined_test_ratio;
// reduce error only if its better than the primary instance by at least EKF2_SEL_ERR_RED to prevent unnecessary selection changes
const float threshold = _gyro_fault_detected ? 0.0f : fmaxf(_param_ekf2_sel_err_red.get(), 0.05f);
if (error_delta > 0 || error_delta < -threshold) {
_instance[i].relative_test_ratio += error_delta;
_instance[i].relative_test_ratio = constrain(_instance[i].relative_test_ratio, -_rel_err_score_lim, _rel_err_score_lim);
}
}
}
}
return (primary_updated || updated);
}
void EKF2Selector::PublishVehicleAttitude(bool reset)
{
vehicle_attitude_s attitude;
if (_instance[_selected_instance].estimator_attitude_sub.copy(&attitude)) {
if (reset) {
// on reset compute deltas from last published data
++_quat_reset_counter;
_delta_q_reset = (Quatf(attitude.q) * Quatf(_attitude_last.q).inversed()).normalized();
// ensure monotonically increasing timestamp_sample through reset
attitude.timestamp_sample = max(attitude.timestamp_sample, _attitude_last.timestamp_sample);
} else {
// otherwise propogate deltas from estimator data while maintaining the overall reset counts
if (attitude.quat_reset_counter > _attitude_last.quat_reset_counter) {
++_quat_reset_counter;
_delta_q_reset = Quatf{attitude.delta_q_reset};
}
}
// save last primary estimator_attitude
_attitude_last = attitude;
// republish with total reset count and current timestamp
attitude.quat_reset_counter = _quat_reset_counter;
_delta_q_reset.copyTo(attitude.delta_q_reset);
attitude.timestamp = hrt_absolute_time();
_vehicle_attitude_pub.publish(attitude);
_instance[_selected_instance].timestamp_sample_last = attitude.timestamp_sample;
}
}
void EKF2Selector::PublishVehicleLocalPosition(bool reset)
{
// vehicle_local_position
vehicle_local_position_s local_position;
if (_instance[_selected_instance].estimator_local_position_sub.copy(&local_position)) {
if (reset) {
// on reset compute deltas from last published data
++_xy_reset_counter;
++_z_reset_counter;
++_vxy_reset_counter;
++_vz_reset_counter;
++_heading_reset_counter;
_delta_xy_reset = Vector2f{local_position.x, local_position.y} - Vector2f{_local_position_last.x, _local_position_last.y};
_delta_z_reset = local_position.z - _local_position_last.z;
_delta_vxy_reset = Vector2f{local_position.vx, local_position.vy} - Vector2f{_local_position_last.vx, _local_position_last.vy};
_delta_vz_reset = local_position.vz - _local_position_last.vz;
_delta_heading_reset = matrix::wrap_2pi(local_position.heading - _local_position_last.heading);
// ensure monotonically increasing timestamp_sample through reset
local_position.timestamp_sample = max(local_position.timestamp_sample, _local_position_last.timestamp_sample);
} else {
// otherwise propogate deltas from estimator data while maintaining the overall reset counts
// XY reset
if (local_position.xy_reset_counter > _local_position_last.xy_reset_counter) {
++_xy_reset_counter;
_delta_xy_reset = Vector2f{local_position.delta_xy};
}
// Z reset
if (local_position.z_reset_counter > _local_position_last.z_reset_counter) {
++_z_reset_counter;
_delta_z_reset = local_position.delta_z;
}
// VXY reset
if (local_position.vxy_reset_counter > _local_position_last.vxy_reset_counter) {
++_vxy_reset_counter;
_delta_vxy_reset = Vector2f{local_position.delta_vxy};
}
// VZ reset
if (local_position.vz_reset_counter > _local_position_last.vz_reset_counter) {
++_vz_reset_counter;
_delta_vz_reset = local_position.delta_vz;
}
// heading reset
if (local_position.heading_reset_counter > _local_position_last.heading_reset_counter) {
++_heading_reset_counter;
_delta_heading_reset = local_position.delta_heading;
}
}
// save last primary estimator_local_position
_local_position_last = local_position;
// publish estimator's local position for system (vehicle_local_position) unless it's stale
if (local_position.timestamp_sample >= _instance[_selected_instance].timestamp_sample_last) {
// republish with total reset count and current timestamp
local_position.xy_reset_counter = _xy_reset_counter;
local_position.z_reset_counter = _z_reset_counter;
local_position.vxy_reset_counter = _vxy_reset_counter;
local_position.vz_reset_counter = _vz_reset_counter;
local_position.heading_reset_counter = _heading_reset_counter;
_delta_xy_reset.copyTo(local_position.delta_xy);
local_position.delta_z = _delta_z_reset;
_delta_vxy_reset.copyTo(local_position.delta_vxy);
local_position.delta_vz = _delta_vz_reset;
local_position.delta_heading = _delta_heading_reset;
local_position.timestamp = hrt_absolute_time();
_vehicle_local_position_pub.publish(local_position);
}
}
}
void EKF2Selector::PublishVehicleGlobalPosition(bool reset)
{
vehicle_global_position_s global_position;
if (_instance[_selected_instance].estimator_global_position_sub.copy(&global_position)) {
if (reset) {
// on reset compute deltas from last published data
++_lat_lon_reset_counter;
++_alt_reset_counter;
_delta_lat_reset = global_position.lat - _global_position_last.lat;
_delta_lon_reset = global_position.lon - _global_position_last.lon;
_delta_alt_reset = global_position.delta_alt - _global_position_last.delta_alt;
// ensure monotonically increasing timestamp_sample through reset
global_position.timestamp_sample = max(global_position.timestamp_sample, _global_position_last.timestamp_sample);
} else {
// otherwise propogate deltas from estimator data while maintaining the overall reset counts
// lat/lon reset
if (global_position.lat_lon_reset_counter > _global_position_last.lat_lon_reset_counter) {
++_lat_lon_reset_counter;
// TODO: delta latitude/longitude
//_delta_lat_reset = global_position.delta_lat;
//_delta_lon_reset = global_position.delta_lon;
}
// alt reset
if (global_position.alt_reset_counter > _global_position_last.alt_reset_counter) {
++_alt_reset_counter;
_delta_alt_reset = global_position.delta_alt;
}
}
// save last primary estimator_global_position
_global_position_last = global_position;
// publish estimator's global position for system (vehicle_global_position) unless it's stale
if (global_position.timestamp_sample >= _instance[_selected_instance].timestamp_sample_last) {
// republish with total reset count and current timestamp
global_position.lat_lon_reset_counter = _lat_lon_reset_counter;
global_position.alt_reset_counter = _alt_reset_counter;
global_position.delta_alt = _delta_alt_reset;
global_position.timestamp = hrt_absolute_time();
_vehicle_global_position_pub.publish(global_position);
}
}
}
void EKF2Selector::PublishWindEstimate(bool reset)
{
wind_s wind;
if (_instance[_selected_instance].estimator_wind_sub.copy(&wind)) {
if (reset) {
// ensure monotonically increasing timestamp_sample through reset
wind.timestamp_sample = max(wind.timestamp_sample, _wind_last.timestamp_sample);
}
// save last primary wind
_wind_last = wind;
// republish with current timestamp
wind.timestamp = hrt_absolute_time();
_wind_pub.publish(wind);
}
}
void EKF2Selector::Run()
{
// re-schedule as backup timeout
ScheduleDelayed(FILTER_UPDATE_PERIOD);
// check for parameter updates
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
}
// update combined test ratio for all estimators
const bool updated = UpdateErrorScores();
// if no valid instance then force select first instance with valid IMU
if (_selected_instance == INVALID_INSTANCE) {
for (uint8_t i = 0; i < EKF2_MAX_INSTANCES; i++) {
if ((_instance[i].accel_device_id != 0)
&& (_instance[i].gyro_device_id != 0)) {
if (SelectInstance(i)) {
break;
}
}
}
// if still invalid return early and check again on next scheduled run
if (_selected_instance == INVALID_INSTANCE) {
return;
}
}
if (updated) {
const uint8_t available_instances_prev = _available_instances;
const uint8_t selected_instance_prev = _selected_instance;
const uint32_t instance_changed_count_prev = _instance_changed_count;
const hrt_abstime last_instance_change_prev = _last_instance_change;
bool lower_error_available = false;
float alternative_error = 0.f; // looking for instances that have error lower than the current primary
float best_test_ratio = FLT_MAX;
uint8_t best_ekf = _selected_instance;
uint8_t best_ekf_alternate = INVALID_INSTANCE;
uint8_t best_ekf_different_imu = INVALID_INSTANCE;
// loop through all available instances to find if an alternative is available
for (int i = 0; i < _available_instances; i++) {
// Use an alternative instance if -
// (healthy and has updated recently)
// AND
// (has relative error less than selected instance and has not been the selected instance for at least 10 seconds
// OR
// selected instance has stopped updating
if (_instance[i].healthy && (i != _selected_instance)) {
const float test_ratio = _instance[i].combined_test_ratio;
const float relative_error = _instance[i].relative_test_ratio;
if (relative_error < alternative_error) {
best_ekf_alternate = i;
alternative_error = relative_error;
// relative error less than selected instance and has not been the selected instance for at least 10 seconds
if ((relative_error <= -_rel_err_thresh) && hrt_elapsed_time(&_instance[i].time_last_selected) > 10_s) {
lower_error_available = true;
}
}
if ((test_ratio > 0) && (test_ratio < best_test_ratio)) {
best_ekf = i;
best_test_ratio = test_ratio;
// also check next best available ekf using a different IMU
if (_instance[i].accel_device_id != _instance[_selected_instance].accel_device_id) {
best_ekf_different_imu = i;
}
}
}
}
if (!_instance[_selected_instance].healthy) {
// prefer the best healthy instance using a different IMU
if (!SelectInstance(best_ekf_different_imu)) {
// otherwise switch to the healthy instance with best overall test ratio
SelectInstance(best_ekf);
}
} else if (lower_error_available && (hrt_elapsed_time(&_last_instance_change) > 10_s)) {
// if this instance has a significantly lower relative error to the active primary, we consider it as a
// better instance and would like to switch to it even if the current primary is healthy
SelectInstance(best_ekf_alternate);
}
// publish selector status at ~1 Hz or immediately on any change
if (_selector_status_publish || (hrt_elapsed_time(&_last_status_publish) > 1_s)
|| (available_instances_prev != _available_instances)
|| (selected_instance_prev != _selected_instance)
|| (instance_changed_count_prev != _instance_changed_count)
|| (last_instance_change_prev != _last_instance_change)
|| _accel_fault_detected || _gyro_fault_detected) {
estimator_selector_status_s selector_status{};
selector_status.primary_instance = _selected_instance;
selector_status.instances_available = _available_instances;
selector_status.instance_changed_count = _instance_changed_count;
selector_status.last_instance_change = _last_instance_change;
selector_status.accel_device_id = _instance[_selected_instance].accel_device_id;
selector_status.baro_device_id = _instance[_selected_instance].baro_device_id;
selector_status.gyro_device_id = _instance[_selected_instance].gyro_device_id;
selector_status.mag_device_id = _instance[_selected_instance].mag_device_id;
selector_status.gyro_fault_detected = _gyro_fault_detected;
selector_status.accel_fault_detected = _accel_fault_detected;
for (int i = 0; i < EKF2_MAX_INSTANCES; i++) {
selector_status.combined_test_ratio[i] = _instance[i].combined_test_ratio;
selector_status.relative_test_ratio[i] = _instance[i].relative_test_ratio;
selector_status.healthy[i] = _instance[i].healthy;
}
for (int i = 0; i < IMU_STATUS_SIZE; i++) {
selector_status.accumulated_gyro_error[i] = _accumulated_gyro_error[i];
selector_status.accumulated_accel_error[i] = _accumulated_accel_error[i];
}
selector_status.timestamp = hrt_absolute_time();
_estimator_selector_status_pub.publish(selector_status);
_last_status_publish = selector_status.timestamp;
_selector_status_publish = false;
}
}
// republish selected estimator data for system
// selected estimator_attitude -> vehicle_attitude
if (_instance[_selected_instance].estimator_attitude_sub.updated()) {
PublishVehicleAttitude();
}
// selected estimator_local_position -> vehicle_local_position
if (_instance[_selected_instance].estimator_local_position_sub.updated()) {
PublishVehicleLocalPosition();
}
// selected estimator_global_position -> vehicle_global_position
if (_instance[_selected_instance].estimator_global_position_sub.updated()) {
PublishVehicleGlobalPosition();
}
// selected estimator_wind -> wind
if (_instance[_selected_instance].estimator_wind_sub.updated()) {
PublishWindEstimate();
}
// selected estimator_odometry -> vehicle_odometry
if (_instance[_selected_instance].estimator_odometry_sub.updated()) {
vehicle_odometry_s vehicle_odometry;
if (_instance[_selected_instance].estimator_odometry_sub.update(&vehicle_odometry)) {
if (vehicle_odometry.timestamp_sample >= _instance[_selected_instance].timestamp_sample_last) {
vehicle_odometry.timestamp = hrt_absolute_time();
_vehicle_odometry_pub.publish(vehicle_odometry);
}
}
}
}
void EKF2Selector::PrintStatus()
{
PX4_INFO("available instances: %d", _available_instances);
if (_selected_instance == INVALID_INSTANCE) {
PX4_WARN("selected instance: None");
}
for (int i = 0; i < _available_instances; i++) {
const EstimatorInstance &inst = _instance[i];
PX4_INFO("%d: ACC: %d, GYRO: %d, MAG: %d, %s, test ratio: %.7f (%.5f) %s",
inst.instance, inst.accel_device_id, inst.gyro_device_id, inst.mag_device_id,
inst.healthy ? "healthy" : "unhealthy",
(double)inst.combined_test_ratio, (double)inst.relative_test_ratio,
(_selected_instance == i) ? "*" : "");
}
}