ControlAllocator.cpp
17.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/****************************************************************************
*
* Copyright (c) 2013-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ControlAllocator.cpp
*
* Control allocator.
*
* @author Julien Lecoeur <julien.lecoeur@gmail.com>
*/
#include "ControlAllocator.hpp"
#include <drivers/drv_hrt.h>
#include <circuit_breaker/circuit_breaker.h>
#include <mathlib/math/Limits.hpp>
#include <mathlib/math/Functions.hpp>
using namespace matrix;
using namespace time_literals;
ControlAllocator::ControlAllocator() :
ModuleParams(nullptr),
WorkItem(MODULE_NAME, px4::wq_configurations::ctrl_alloc),
_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle"))
{
parameters_updated();
}
ControlAllocator::~ControlAllocator()
{
delete _control_allocation;
delete _actuator_effectiveness;
perf_free(_loop_perf);
}
bool
ControlAllocator::init()
{
if (!_vehicle_torque_setpoint_sub.registerCallback()) {
PX4_ERR("vehicle_torque_setpoint callback registration failed!");
return false;
}
if (!_vehicle_thrust_setpoint_sub.registerCallback()) {
PX4_ERR("vehicle_thrust_setpoint callback registration failed!");
return false;
}
return true;
}
void
ControlAllocator::parameters_updated()
{
// Allocation method & effectiveness source
// Do this first: in case a new method is loaded, it will be configured below
update_effectiveness_source();
update_allocation_method();
if (_control_allocation == nullptr) {
return;
}
// Minimum actuator values
matrix::Vector<float, NUM_ACTUATORS> actuator_min;
actuator_min(0) = _param_ca_act0_min.get();
actuator_min(1) = _param_ca_act1_min.get();
actuator_min(2) = _param_ca_act2_min.get();
actuator_min(3) = _param_ca_act3_min.get();
actuator_min(4) = _param_ca_act4_min.get();
actuator_min(5) = _param_ca_act5_min.get();
actuator_min(6) = _param_ca_act6_min.get();
actuator_min(7) = _param_ca_act7_min.get();
actuator_min(8) = _param_ca_act8_min.get();
actuator_min(9) = _param_ca_act9_min.get();
actuator_min(10) = _param_ca_act10_min.get();
actuator_min(11) = _param_ca_act11_min.get();
actuator_min(12) = _param_ca_act12_min.get();
actuator_min(13) = _param_ca_act13_min.get();
actuator_min(14) = _param_ca_act14_min.get();
actuator_min(15) = _param_ca_act15_min.get();
_control_allocation->setActuatorMin(actuator_min);
// Maximum actuator values
matrix::Vector<float, NUM_ACTUATORS> actuator_max;
actuator_max(0) = _param_ca_act0_max.get();
actuator_max(1) = _param_ca_act1_max.get();
actuator_max(2) = _param_ca_act2_max.get();
actuator_max(3) = _param_ca_act3_max.get();
actuator_max(4) = _param_ca_act4_max.get();
actuator_max(5) = _param_ca_act5_max.get();
actuator_max(6) = _param_ca_act6_max.get();
actuator_max(7) = _param_ca_act7_max.get();
actuator_max(8) = _param_ca_act8_max.get();
actuator_max(9) = _param_ca_act9_max.get();
actuator_max(10) = _param_ca_act10_max.get();
actuator_max(11) = _param_ca_act11_max.get();
actuator_max(12) = _param_ca_act12_max.get();
actuator_max(13) = _param_ca_act13_max.get();
actuator_max(14) = _param_ca_act14_max.get();
actuator_max(15) = _param_ca_act15_max.get();
_control_allocation->setActuatorMax(actuator_max);
}
void
ControlAllocator::update_allocation_method()
{
AllocationMethod method = (AllocationMethod)_param_ca_method.get();
if (_allocation_method_id != method) {
// Save current state
matrix::Vector<float, NUM_ACTUATORS> actuator_sp;
if (_control_allocation != nullptr) {
actuator_sp = _control_allocation->getActuatorSetpoint();
}
// try to instanciate new allocation method
ControlAllocation *tmp = nullptr;
switch (method) {
case AllocationMethod::PSEUDO_INVERSE:
tmp = new ControlAllocationPseudoInverse();
break;
case AllocationMethod::SEQUENTIAL_DESATURATION:
tmp = new ControlAllocationSequentialDesaturation();
break;
default:
PX4_ERR("Unknown allocation method");
break;
}
// Replace previous method with new one
if (tmp == nullptr) {
// It did not work, forget about it
PX4_ERR("Control allocation init failed");
_param_ca_method.set((int)_allocation_method_id);
} else {
// Swap allocation methods
delete _control_allocation;
_control_allocation = tmp;
// Save method id
_allocation_method_id = method;
// Configure new allocation method
_control_allocation->setActuatorSetpoint(actuator_sp);
}
}
}
void
ControlAllocator::update_effectiveness_source()
{
EffectivenessSource source = (EffectivenessSource)_param_ca_airframe.get();
if (_effectiveness_source_id != source) {
// try to instanciate new effectiveness source
ActuatorEffectiveness *tmp = nullptr;
switch (source) {
case EffectivenessSource::NONE:
case EffectivenessSource::MULTIROTOR:
tmp = new ActuatorEffectivenessMultirotor();
break;
case EffectivenessSource::STANDARD_VTOL:
tmp = new ActuatorEffectivenessStandardVTOL();
break;
case EffectivenessSource::TILTROTOR_VTOL:
tmp = new ActuatorEffectivenessTiltrotorVTOL();
break;
default:
PX4_ERR("Unknown airframe");
break;
}
// Replace previous source with new one
if (tmp == nullptr) {
// It did not work, forget about it
PX4_ERR("Actuator effectiveness init failed");
_param_ca_airframe.set((int)_effectiveness_source_id);
} else {
// Swap effectiveness sources
delete _actuator_effectiveness;
_actuator_effectiveness = tmp;
// Save source id
_effectiveness_source_id = source;
}
}
}
void
ControlAllocator::Run()
{
if (should_exit()) {
_vehicle_torque_setpoint_sub.unregisterCallback();
_vehicle_thrust_setpoint_sub.unregisterCallback();
exit_and_cleanup();
return;
}
perf_begin(_loop_perf);
// Check if parameters have changed
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s param_update;
_parameter_update_sub.copy(¶m_update);
if (_control_allocation) {
_control_allocation->updateParameters();
}
updateParams();
parameters_updated();
}
if (_control_allocation == nullptr || _actuator_effectiveness == nullptr) {
return;
}
vehicle_status_s vehicle_status;
if (_vehicle_status_sub.update(&vehicle_status)) {
ActuatorEffectiveness::FlightPhase flight_phase{ActuatorEffectiveness::FlightPhase::HOVER_FLIGHT};
// Check if the current flight phase is HOVER or FIXED_WING
if (vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
flight_phase = ActuatorEffectiveness::FlightPhase::HOVER_FLIGHT;
} else {
flight_phase = ActuatorEffectiveness::FlightPhase::FORWARD_FLIGHT;
}
// Special cases for VTOL in transition
if (vehicle_status.is_vtol && vehicle_status.in_transition_mode) {
if (vehicle_status.in_transition_to_fw) {
flight_phase = ActuatorEffectiveness::FlightPhase::TRANSITION_HF_TO_FF;
} else {
flight_phase = ActuatorEffectiveness::FlightPhase::TRANSITION_FF_TO_HF;
}
}
// Forward to effectiveness source
_actuator_effectiveness->setFlightPhase(flight_phase);
}
// Guard against too small (< 0.2ms) and too large (> 20ms) dt's.
const hrt_abstime now = hrt_absolute_time();
const float dt = math::constrain(((now - _last_run) / 1e6f), 0.0002f, 0.02f);
bool do_update = false;
vehicle_torque_setpoint_s vehicle_torque_setpoint;
vehicle_thrust_setpoint_s vehicle_thrust_setpoint;
// Run allocator on torque changes
if (_vehicle_torque_setpoint_sub.update(&vehicle_torque_setpoint)) {
_torque_sp = matrix::Vector3f(vehicle_torque_setpoint.xyz);
do_update = true;
_timestamp_sample = vehicle_torque_setpoint.timestamp_sample;
}
// Also run allocator on thrust setpoint changes if the torque setpoint
// has not been updated for more than 5ms
if (_vehicle_thrust_setpoint_sub.update(&vehicle_thrust_setpoint)) {
_thrust_sp = matrix::Vector3f(vehicle_thrust_setpoint.xyz);
if (dt > 5_ms) {
do_update = true;
_timestamp_sample = vehicle_thrust_setpoint.timestamp_sample;
}
}
if (do_update) {
_last_run = now;
update_effectiveness_matrix_if_needed();
// Set control setpoint vector
matrix::Vector<float, NUM_AXES> c;
c(0) = _torque_sp(0);
c(1) = _torque_sp(1);
c(2) = _torque_sp(2);
c(3) = _thrust_sp(0);
c(4) = _thrust_sp(1);
c(5) = _thrust_sp(2);
_control_allocation->setControlSetpoint(c);
// Do allocation
_control_allocation->allocate();
// Publish actuator setpoint and allocator status
publish_actuator_setpoint();
publish_control_allocator_status();
// Publish on legacy topics for compatibility with
// the current mixer system and multicopter controller
// TODO: remove
publish_legacy_actuator_controls();
}
perf_end(_loop_perf);
}
void
ControlAllocator::update_effectiveness_matrix_if_needed()
{
matrix::Matrix<float, NUM_AXES, NUM_ACTUATORS> effectiveness;
if (_actuator_effectiveness->getEffectivenessMatrix(effectiveness)) {
const matrix::Vector<float, NUM_ACTUATORS> &trim = _actuator_effectiveness->getActuatorTrim();
// Set 0 effectiveness for actuators that are disabled (act_min >= act_max)
matrix::Vector<float, NUM_ACTUATORS> actuator_max = _control_allocation->getActuatorMax();
matrix::Vector<float, NUM_ACTUATORS> actuator_min = _control_allocation->getActuatorMin();
for (size_t j = 0; j < NUM_ACTUATORS; j++) {
if (actuator_min(j) >= actuator_max(j)) {
for (size_t i = 0; i < NUM_AXES; i++) {
effectiveness(i, j) = 0.0f;
}
}
}
// Assign control effectiveness matrix
_control_allocation->setEffectivenessMatrix(effectiveness, trim, _actuator_effectiveness->numActuators());
}
}
void
ControlAllocator::publish_actuator_setpoint()
{
matrix::Vector<float, NUM_ACTUATORS> actuator_sp = _control_allocation->getActuatorSetpoint();
vehicle_actuator_setpoint_s vehicle_actuator_setpoint{};
vehicle_actuator_setpoint.timestamp = hrt_absolute_time();
vehicle_actuator_setpoint.timestamp_sample = _timestamp_sample;
actuator_sp.copyTo(vehicle_actuator_setpoint.actuator);
_vehicle_actuator_setpoint_pub.publish(vehicle_actuator_setpoint);
}
void
ControlAllocator::publish_control_allocator_status()
{
control_allocator_status_s control_allocator_status{};
control_allocator_status.timestamp = hrt_absolute_time();
// Allocated control
const matrix::Vector<float, NUM_AXES> &allocated_control = _control_allocation->getAllocatedControl();
control_allocator_status.allocated_torque[0] = allocated_control(0);
control_allocator_status.allocated_torque[1] = allocated_control(1);
control_allocator_status.allocated_torque[2] = allocated_control(2);
control_allocator_status.allocated_thrust[0] = allocated_control(3);
control_allocator_status.allocated_thrust[1] = allocated_control(4);
control_allocator_status.allocated_thrust[2] = allocated_control(5);
// Unallocated control
matrix::Vector<float, NUM_AXES> unallocated_control = _control_allocation->getControlSetpoint() - allocated_control;
control_allocator_status.unallocated_torque[0] = unallocated_control(0);
control_allocator_status.unallocated_torque[1] = unallocated_control(1);
control_allocator_status.unallocated_torque[2] = unallocated_control(2);
control_allocator_status.unallocated_thrust[0] = unallocated_control(3);
control_allocator_status.unallocated_thrust[1] = unallocated_control(4);
control_allocator_status.unallocated_thrust[2] = unallocated_control(5);
// Allocation success flags
control_allocator_status.torque_setpoint_achieved = (Vector3f(unallocated_control(0), unallocated_control(1),
unallocated_control(2)).norm_squared() < 1e-6f);
control_allocator_status.thrust_setpoint_achieved = (Vector3f(unallocated_control(3), unallocated_control(4),
unallocated_control(5)).norm_squared() < 1e-6f);
// Actuator saturation
const matrix::Vector<float, NUM_ACTUATORS> &actuator_sp = _control_allocation->getActuatorSetpoint();
const matrix::Vector<float, NUM_ACTUATORS> &actuator_min = _control_allocation->getActuatorMin();
const matrix::Vector<float, NUM_ACTUATORS> &actuator_max = _control_allocation->getActuatorMax();
for (size_t i = 0; i < NUM_ACTUATORS; i++) {
if (actuator_sp(i) > (actuator_max(i) - FLT_EPSILON)) {
control_allocator_status.actuator_saturation[i] = control_allocator_status_s::ACTUATOR_SATURATION_UPPER;
} else if (actuator_sp(i) < (actuator_min(i) + FLT_EPSILON)) {
control_allocator_status.actuator_saturation[i] = control_allocator_status_s::ACTUATOR_SATURATION_LOWER;
}
}
_control_allocator_status_pub.publish(control_allocator_status);
}
void
ControlAllocator::publish_legacy_actuator_controls()
{
// For compatibility with the current mixer system,
// publish normalized version on actuator_controls_4/5
actuator_controls_s actuator_controls_4{};
actuator_controls_s actuator_controls_5{};
actuator_controls_4.timestamp = hrt_absolute_time();
actuator_controls_5.timestamp = hrt_absolute_time();
actuator_controls_4.timestamp_sample = _timestamp_sample;
actuator_controls_5.timestamp_sample = _timestamp_sample;
matrix::Vector<float, NUM_ACTUATORS> actuator_sp = _control_allocation->getActuatorSetpoint();
matrix::Vector<float, NUM_ACTUATORS> actuator_sp_normalized = _control_allocation->normalizeActuatorSetpoint(
actuator_sp);
for (size_t i = 0; i < 8; i++) {
actuator_controls_4.control[i] = (PX4_ISFINITE(actuator_sp_normalized(i))) ? actuator_sp_normalized(i) : 0.0f;
actuator_controls_5.control[i] = (PX4_ISFINITE(actuator_sp_normalized(i + 8))) ? actuator_sp_normalized(i + 8) : 0.0f;
}
_actuator_controls_4_pub.publish(actuator_controls_4);
_actuator_controls_5_pub.publish(actuator_controls_5);
}
int ControlAllocator::task_spawn(int argc, char *argv[])
{
ControlAllocator *instance = new ControlAllocator();
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int ControlAllocator::print_status()
{
PX4_INFO("Running");
// Print current allocation method
switch (_allocation_method_id) {
case AllocationMethod::NONE:
PX4_INFO("Method: None");
break;
case AllocationMethod::PSEUDO_INVERSE:
PX4_INFO("Method: Pseudo-inverse");
break;
case AllocationMethod::SEQUENTIAL_DESATURATION:
PX4_INFO("Method: Sequential desaturation");
break;
}
// Print current airframe
switch ((EffectivenessSource)_param_ca_airframe.get()) {
case EffectivenessSource::NONE:
PX4_INFO("EffectivenessSource: None");
break;
case EffectivenessSource::MULTIROTOR:
PX4_INFO("EffectivenessSource: MC parameters");
break;
case EffectivenessSource::STANDARD_VTOL:
PX4_INFO("EffectivenessSource: Standard VTOL");
break;
case EffectivenessSource::TILTROTOR_VTOL:
PX4_INFO("EffectivenessSource: Tiltrotor VTOL");
break;
}
// Print current effectiveness matrix
if (_control_allocation != nullptr) {
const matrix::Matrix<float, NUM_AXES, NUM_ACTUATORS> &effectiveness = _control_allocation->getEffectivenessMatrix();
PX4_INFO("Effectiveness.T =");
effectiveness.T().print();
PX4_INFO("Configured actuators: %i", _control_allocation->numConfiguredActuators());
}
// Print perf
perf_print_counter(_loop_perf);
return 0;
}
int ControlAllocator::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int ControlAllocator::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
This implements control allocation. It takes torque and thrust setpoints
as inputs and outputs actuator setpoint messages.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME(MODULE_NAME, "controller");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
/**
* Control Allocator app start / stop handling function
*/
extern "C" __EXPORT int control_allocator_main(int argc, char *argv[]);
int control_allocator_main(int argc, char *argv[])
{
return ControlAllocator::main(argc, argv);
}