attitude.cpp
14.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#include "test_macros.hpp"
#include <matrix/math.hpp>
#include <iostream>
using namespace matrix;
// manually instantiated all files we intend to test
// so that coverage works correctly
// doesn't matter what test this is in
namespace matrix {
template class Matrix<float, 3, 3>;
template class Vector3<float>;
template class Vector2<float>;
template class Vector<float, 4>;
template class Quaternion<float>;
template class AxisAngle<float>;
template class Scalar<float>;
template class SquareMatrix<float, 4>;
}
int main()
{
// check data
Eulerf euler_check(0.1f, 0.2f, 0.3f);
Quatf q_check(0.98334744f, 0.0342708f, 0.10602051f, .14357218f);
float dcm_data[] = {
0.93629336f, -0.27509585f, 0.21835066f,
0.28962948f, 0.95642509f, -0.03695701f,
-0.19866933f, 0.0978434f, 0.97517033f
};
Dcmf dcm_check(dcm_data);
// euler ctor
TEST(isEqual(euler_check, Vector3f(0.1f, 0.2f, 0.3f)));
// euler default ctor
Eulerf e;
Eulerf e_zero = zeros<float, 3, 1>();
TEST(isEqual(e, e_zero));
TEST(isEqual(e, e));
// euler vector ctor
Vector3f v(0.1f, 0.2f, 0.3f);
Eulerf euler_copy(v);
TEST(isEqual(euler_copy, euler_check));
// quaternion ctor
Quatf q0(1, 2, 3, 4);
Quatf q(q0);
double eps = 1e-6;
TEST(fabs(q(0) - 1) < eps);
TEST(fabs(q(1) - 2) < eps);
TEST(fabs(q(2) - 3) < eps);
TEST(fabs(q(3) - 4) < eps);
// quaternion ctor: vector to vector
// identity test
Quatf quat_v(v,v);
TEST(isEqual(quat_v.conjugate(v), v));
// random test (vector norm can not be preserved with a pure rotation)
Vector3f v1(-80.1f, 1.5f, -6.89f);
quat_v = Quatf(v1, v);
TEST(isEqual(quat_v.conjugate(v1).normalized() * v.norm(), v));
// special 180 degree case 1
v1 = Vector3f(0.f, 1.f, 1.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// special 180 degree case 2
v1 = Vector3f(1.f, 2.f, 0.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// special 180 degree case 3
v1 = Vector3f(0.f, 0.f, 1.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// special 180 degree case 4
v1 = Vector3f(1.f, 1.f, 1.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// quat normalization
q.normalize();
TEST(isEqual(q, Quatf(0.18257419f, 0.36514837f,
0.54772256f, 0.73029674f)));
TEST(isEqual(q0.unit(), q));
TEST(isEqual(q0.unit(), q0.normalized()));
// quat default ctor
q = Quatf();
TEST(isEqual(q, Quatf(1, 0, 0, 0)));
// euler to quaternion
q = Quatf(euler_check);
TEST(isEqual(q, q_check));
// euler to dcm
Dcmf dcm(euler_check);
TEST(isEqual(dcm, dcm_check));
// quaternion to euler
Eulerf e1(q_check);
TEST(isEqual(e1, euler_check));
// quaternion to dcm
Dcmf dcm1(q_check);
TEST(isEqual(dcm1, dcm_check));
// quaternion z-axis unit base vector
Vector3f q_z = q_check.dcm_z();
Vector3f R_z(dcm_check(0, 2), dcm_check(1, 2), dcm_check(2, 2));
TEST(isEqual(q_z, R_z));
// dcm default ctor
Dcmf dcm2;
SquareMatrix<float, 3> I = eye<float, 3>();
TEST(isEqual(dcm2, I));
// dcm to euler
Eulerf e2(dcm_check);
TEST(isEqual(e2, euler_check));
// dcm to quaterion
Quatf q2(dcm_check);
TEST(isEqual(q2, q_check));
// dcm renormalize
Dcmf A = eye<float, 3>();
Dcmf R(euler_check);
for (size_t i = 0; i < 1000; i++) {
A = R * A;
}
A.renormalize();
float err = 0.0f;
for (size_t r = 0; r < 3; r++) {
Vector3f rvec(matrix::Matrix<float,1,3>(A.row(r)).transpose());
err += fabs(1.0f - rvec.length());
}
TEST(err < eps);
// constants
double deg2rad = M_PI / 180.0;
double rad2deg = 180.0 / M_PI;
// euler dcm round trip check
for (double roll = -90; roll <= 90; roll += 90) {
for (double pitch = -90; pitch <= 90; pitch += 90) {
for (double yaw = -179; yaw <= 180; yaw += 90) {
// note if theta = pi/2, then roll is set to zero
double roll_expected = roll;
double yaw_expected = yaw;
if (fabs(pitch -90) < eps) {
roll_expected = 0;
yaw_expected = yaw - roll;
} else if (fabs(pitch + 90) < eps) {
roll_expected = 0;
yaw_expected = yaw + roll;
}
if (yaw_expected < -180) {
yaw_expected += 360;
}
if (yaw_expected > 180) {
yaw_expected -= 360;
}
//printf("roll:%d pitch:%d yaw:%d\n", roll, pitch, yaw);
Euler<double> euler_expected(
deg2rad * roll_expected,
deg2rad * pitch,
deg2rad * yaw_expected);
Euler<double> euler(
deg2rad * roll,
deg2rad * pitch,
deg2rad * yaw);
Dcm<double> dcm_from_euler(euler);
//dcm_from_euler.print();
Euler<double> euler_out(dcm_from_euler);
TEST(isEqual(rad2deg * euler_expected, rad2deg * euler_out));
Eulerf eulerf_expected(
float(deg2rad)*float(roll_expected),
float(deg2rad)*float(pitch),
float(deg2rad)*float(yaw_expected));
Eulerf eulerf(float(deg2rad)*float(roll),
float(deg2rad)*float(pitch),
float(deg2rad)*float(yaw));
Dcm<float> dcm_from_eulerf;
dcm_from_eulerf = eulerf;
Euler<float> euler_outf(dcm_from_eulerf);
TEST(isEqual(float(rad2deg)*eulerf_expected,
float(rad2deg)*euler_outf));
}
}
}
// quaterion copy ctors
float data_v4[] = {1, 2, 3, 4};
Vector<float, 4> v4(data_v4);
Quatf q_from_v(v4);
TEST(isEqual(q_from_v, v4));
Matrix<float, 4, 1> m4(data_v4);
Quatf q_from_m(m4);
TEST(isEqual(q_from_m, m4));
// quaternion derivative in frame 1
Quatf q1(0, 1, 0, 0);
Vector<float, 4> q1_dot1 = q1.derivative1(Vector3f(1, 2, 3));
float data_q_dot1_check[] = { -0.5f, 0.0f, -1.5f, 1.0f};
Vector<float, 4> q1_dot1_check(data_q_dot1_check);
TEST(isEqual(q1_dot1, q1_dot1_check));
// quaternion derivative in frame 2
Vector<float, 4> q1_dot2 = q1.derivative2(Vector3f(1, 2, 3));
float data_q_dot2_check[] = { -0.5f, 0.0f, 1.5f, -1.0f};
Vector<float, 4> q1_dot2_check(data_q_dot2_check);
TEST(isEqual(q1_dot2, q1_dot2_check));
// quaternion product
Quatf q_prod_check(
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f);
TEST(isEqual(q_prod_check, q_check * q_check));
q_check *= q_check;
TEST(isEqual(q_prod_check, q_check));
// Quaternion scalar multiplication
float scalar = 0.5;
Quatf q_scalar_mul(1.0f, 2.0f, 3.0f, 4.0f);
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar,
3.0f * scalar, 4.0f * scalar);
Quatf q_scalar_mul_res = scalar * q_scalar_mul;
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res));
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar;
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res2));
Quatf q_scalar_mul_res3(q_scalar_mul);
q_scalar_mul_res3 *= scalar;
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res3));
// quaternion inverse
q = q_check.inversed();
TEST(fabs(q_check(0) - q(0)) < eps);
TEST(fabs(q_check(1) + q(1)) < eps);
TEST(fabs(q_check(2) + q(2)) < eps);
TEST(fabs(q_check(3) + q(3)) < eps);
q = q_check;
q.invert();
TEST(fabs(q_check(0) - q(0)) < eps);
TEST(fabs(q_check(1) + q(1)) < eps);
TEST(fabs(q_check(2) + q(2)) < eps);
TEST(fabs(q_check(3) + q(3)) < eps);
// quaternion canonical
Quatf q_non_canonical_1(-0.7f,0.4f, 0.3f, -0.3f);
Quatf q_canonical_1(0.7f,-0.4f, -0.3f, 0.3f);
Quatf q_canonical_ref_1(0.7f,-0.4f, -0.3f, 0.3f);
TEST(isEqual(q_non_canonical_1.canonical(),q_canonical_ref_1));
TEST(isEqual(q_canonical_1.canonical(),q_canonical_ref_1));
q_non_canonical_1.canonicalize();
q_canonical_1.canonicalize();
TEST(isEqual(q_non_canonical_1,q_canonical_ref_1));
TEST(isEqual(q_canonical_1,q_canonical_ref_1));
Quatf q_non_canonical_2(0.0f, -1.0f, 0.0f, 0.0f);
Quatf q_canonical_2(0.0f, 1.0f, 0.0f, 0.0f);
Quatf q_canonical_ref_2(0.0f, 1.0f, 0.0f, 0.0f);
TEST(isEqual(q_non_canonical_2.canonical(),q_canonical_ref_2));
TEST(isEqual(q_canonical_2.canonical(),q_canonical_ref_2));
q_non_canonical_2.canonicalize();
q_canonical_2.canonicalize();
TEST(isEqual(q_non_canonical_2,q_canonical_ref_2));
TEST(isEqual(q_canonical_2,q_canonical_ref_2));
Quatf q_non_canonical_3(0.0f, 0.0f, -1.0f, 0.0f);
Quatf q_canonical_3(0.0f, 0.0f, 1.0f, 0.0f);
Quatf q_canonical_ref_3(0.0f, 0.0f, 1.0f, 0.0f);
TEST(isEqual(q_non_canonical_3.canonical(),q_canonical_ref_3));
TEST(isEqual(q_canonical_3.canonical(),q_canonical_ref_3));
q_non_canonical_3.canonicalize();
q_canonical_3.canonicalize();
TEST(isEqual(q_non_canonical_3,q_canonical_ref_3));
TEST(isEqual(q_canonical_3,q_canonical_ref_3));
Quatf q_non_canonical_4(0.0f, 0.0f, 0.0f, -1.0f);
Quatf q_canonical_4(0.0f, 0.0f, 0.0f, 1.0f);
Quatf q_canonical_ref_4(0.0f, 0.0f, 0.0f, 1.0f);
TEST(isEqual(q_non_canonical_4.canonical(),q_canonical_ref_4));
TEST(isEqual(q_canonical_4.canonical(),q_canonical_ref_4));
q_non_canonical_4.canonicalize();
q_canonical_4.canonicalize();
TEST(isEqual(q_non_canonical_4,q_canonical_ref_4));
TEST(isEqual(q_canonical_4,q_canonical_ref_4));
Quatf q_non_canonical_5(0.0f, 0.0f, 0.0f, 0.0f);
Quatf q_canonical_5(0.0f, 0.0f, 0.0f, 0.0f);
Quatf q_canonical_ref_5(0.0f, 0.0f, 0.0f, 0.0f);
TEST(isEqual(q_non_canonical_5.canonical(),q_canonical_ref_5));
TEST(isEqual(q_canonical_5.canonical(),q_canonical_ref_5));
q_non_canonical_5.canonicalize();
q_canonical_5.canonicalize();
TEST(isEqual(q_non_canonical_5,q_canonical_ref_5));
TEST(isEqual(q_canonical_5,q_canonical_ref_5));
// quaternion setIdentity
Quatf q_nonIdentity(-0.7f, 0.4f, 0.5f, -0.3f);
q_nonIdentity.setIdentity();
TEST(isEqual(q_nonIdentity, Quatf()));
// non-unit quaternion invese
Quatf q_nonunit(0.1f, 0.2f, 0.3f, 0.4f);
TEST(isEqual(q_nonunit*q_nonunit.inversed(), Quatf()));
// rotate quaternion (nonzero rotation)
Vector3f rot(1.f, 0.f, 0.f);
Quatf q_test;
q_test.rotate(rot);
Quatf q_true(cos(1.0f / 2), sin(1.0f / 2), 0.0f, 0.0f);
TEST(isEqual(q_test, q_true));
// rotate quaternion (zero rotation)
rot(0) = rot(1) = rot(2) = 0.0f;
q_test = Quatf();
q_test.rotate(rot);
q_true = Quatf(cos(0.0f), sin(0.0f), 0.0f, 0.0f);
TEST(isEqual(q_test, q_true));
// rotate quaternion (random non-commutating rotation)
q = Quatf(AxisAnglef(5.1f, 3.2f, 8.4f));
rot = Vector3f(1.1f, 2.5f, 3.8f);
q.rotate(rot);
q_true = Quatf(0.3019f, 0.2645f, 0.2268f, 0.8874f);
TEST(isEqual(q, q_true));
// get rotation axis from quaternion (nonzero rotation)
q = Quatf(cos(1.0f / 2), 0.0f, sin(1.0f / 2), 0.0f);
rot = AxisAnglef(q);
TEST(fabs(rot(0)) < eps);
TEST(fabs(rot(1) - 1.0f) < eps);
TEST(fabs(rot(2)) < eps);
// get rotation axis from quaternion (zero rotation)
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
rot = AxisAnglef(q);
TEST(fabs(rot(0)) < eps);
TEST(fabs(rot(1)) < eps);
TEST(fabs(rot(2)) < eps);
// from axis angle (zero rotation)
rot(0) = rot(1) = rot(2) = 0.0f;
q = Quatf(AxisAnglef(rot));
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
TEST(isEqual(q, q_true));
// from axis angle, with length of vector the rotation
float n = float(sqrt(4*M_PI*M_PI/3));
q = AxisAnglef(n, n, n);
TEST(isEqual(q, Quatf(-1, 0, 0, 0)));
q = AxisAnglef(0, 0, 0);
TEST(isEqual(q, Quatf(1, 0, 0, 0)));
// Quaternion initialisation per array
float q_array[] = {0.9833f, -0.0343f, -0.1060f, -0.1436f};
Quaternion<float>q_from_array(q_array);
for (size_t i = 0; i < 4; i++) {
TEST(fabs(q_from_array(i) - q_array[i]) < eps);
}
// axis angle
AxisAnglef aa_true(Vector3f(1.0f, 2.0f, 3.0f));
TEST(isEqual(aa_true, Vector3f(1.0f, 2.0f, 3.0f)));
AxisAnglef aa_empty;
TEST(isEqual(aa_empty, AxisAnglef(0.0f, 0.0f, 0.0f)));
float aa_data[] = {4.0f, 5.0f, 6.0f};
AxisAnglef aa_data_init(aa_data);
TEST(isEqual(aa_data_init, AxisAnglef(4.0f, 5.0f, 6.0f)));
AxisAnglef aa_norm_check(Vector3f(0.0f, 0.0f, 0.0f));
TEST(isEqual(aa_norm_check.axis(), Vector3f(1, 0, 0)));
TEST(isEqualF(aa_norm_check.angle(), 0.0f));
q = Quatf(-0.29555112749297824f, 0.25532186f, 0.51064372f, 0.76596558f);
float r_array[9] = {-0.6949206f, 0.713521f, 0.089292854f, -0.19200698f, -0.30378509f, 0.93319237f, 0.69297814f, 0.63134968f, 0.34810752f};
R = Dcmf(r_array);
TEST(isEqual(q.imag(), Vector3f(0.25532186f, 0.51064372f, 0.76596558f)));
// from dcm
TEST(isEqual(Quatf(R), q));
TEST(isEqual(Quatf(Dcmf(q)), q));
// to dcm
TEST(isEqual(Dcmf(q), R));
TEST(isEqual(Dcmf(Quatf(R)), R));
// conjugate
v = Vector3f(1.5f, 2.2f, 3.2f);
TEST(isEqual(q.conjugate_inversed(v1), Dcmf(q).T()*v1));
TEST(isEqual(q.conjugate(v1), Dcmf(q)*v1));
AxisAnglef aa_q_init(q);
TEST(isEqual(aa_q_init, AxisAnglef(1.0f, 2.0f, 3.0f)));
AxisAnglef aa_euler_init(Eulerf(0.0f, 0.0f, 0.0f));
TEST(isEqual(aa_euler_init, Vector3f(0.0f, 0.0f, 0.0f)));
Dcmf dcm_aa_check = AxisAnglef(dcm_check);
TEST(isEqual(dcm_aa_check, dcm_check));
AxisAnglef aa_axis_angle_init(Vector3f(1.0f, 2.0f, 3.0f), 3.0f);
TEST(isEqual(aa_axis_angle_init, Vector3f(0.80178373f, 1.60356745f, 2.40535118f)));
TEST(isEqual(aa_axis_angle_init.axis(), Vector3f(0.26726124f, 0.53452248f, 0.80178373f)));
TEST(isEqualF(aa_axis_angle_init.angle(), 3.0f));
TEST(isEqual(Quatf((AxisAnglef(Vector3f(0.0f, 0.0f, 1.0f), 0.0f))),
Quatf(1.0f, 0.0f, 0.0f, 0.0f)));
// check consistentcy of quaternion and dcm product
Dcmf dcm3(Eulerf(1, 2, 3));
Dcmf dcm4(Eulerf(4, 5, 6));
Dcmf dcm34 = dcm3 * dcm4;
TEST(isEqual(Eulerf(Quatf(dcm3)*Quatf(dcm4)), Eulerf(dcm34)));
// check corner cases of matrix to quaternion conversion
q = Quatf(0,1,0,0); // 180 degree rotation around the x axis
R = Dcmf(q);
TEST(isEqual(q, Quatf(R)));
q = Quatf(0,0,1,0); // 180 degree rotation around the y axis
R = Dcmf(q);
TEST(isEqual(q, Quatf(R)));
q = Quatf(0,0,0,1); // 180 degree rotation around the z axis
R = Dcmf(q);
TEST(isEqual(q, Quatf(R)));
#if defined(SUPPORT_STDIOSTREAM)
std::cout << "q:" << q;
#endif
return 0;
}
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */