BMM150.cpp 14.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/****************************************************************************
 *
 *   Copyright (c) 2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "BMM150.hpp"

using namespace time_literals;

BMM150::BMM150(I2CSPIBusOption bus_option, int bus, int bus_frequency, enum Rotation rotation) :
	I2C(DRV_MAG_DEVTYPE_BMM150, MODULE_NAME, bus, I2C_ADDRESS_DEFAULT, bus_frequency),
	I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
	_px4_mag(get_device_id(), rotation)
{
	_px4_mag.set_external(external());
}

BMM150::~BMM150()
{
	perf_free(_reset_perf);
	perf_free(_bad_register_perf);
	perf_free(_bad_transfer_perf);
	perf_free(_overflow_perf);
}

int BMM150::init()
{
	int ret = I2C::init();

	if (ret != PX4_OK) {
		DEVICE_DEBUG("I2C::init failed (%i)", ret);
		return ret;
	}

	return Reset() ? 0 : -1;
}

bool BMM150::Reset()
{
	RegisterWrite(Register::POWER_CONTROL, 0);
	_state = STATE::RESET;
	ScheduleClear();
	ScheduleDelayed(1_ms);
	return true;
}

void BMM150::print_status()
{
	I2CSPIDriverBase::print_status();

	perf_print_counter(_reset_perf);
	perf_print_counter(_bad_register_perf);
	perf_print_counter(_bad_transfer_perf);
	perf_print_counter(_overflow_perf);
}

int BMM150::probe()
{
	const uint8_t POWER_CONTROL = RegisterRead(Register::POWER_CONTROL);
	const uint8_t CHIP_ID = RegisterRead(Register::CHIP_ID);

	PX4_DEBUG("POWER_CONTROL: 0x%02hhX, CHIP_ID: 0x%02hhX", POWER_CONTROL, CHIP_ID);

	// either power control bit is set and chip ID can be read, or both registers are 0x00
	if ((POWER_CONTROL & POWER_CONTROL_BIT::PowerControl) && (CHIP_ID == chip_identification_number)) {
		return PX4_OK;

	} else if ((POWER_CONTROL == 0) && (CHIP_ID == 0)) {
		return PX4_OK;
	}

	return PX4_ERROR;
}

float BMM150::compensate_x(int16_t mag_data_x, uint16_t data_rhall)
{
	float retval = 0;

	// Processing compensation equations
	//  not documented, but derived from https://github.com/BoschSensortec/BMM150-Sensor-API/blob/a20641f216057f0c54de115fe81b57368e119c01/bmm150.c#L1624-L1633 as of 2020-09-25
	float process_comp_x0 = (((float)_trim_data.dig_xyz1) * 16384.f / data_rhall);
	retval = (process_comp_x0 - 16384.f);
	float process_comp_x1 = ((float)_trim_data.dig_xy2) * (retval * retval / 268435456.f);
	float process_comp_x2 = process_comp_x1 + retval * ((float)_trim_data.dig_xy1) / 16384.f;
	float process_comp_x3 = ((float)_trim_data.dig_x2) + 160.f;
	float process_comp_x4 = mag_data_x * ((process_comp_x2 + 256.f) * process_comp_x3);
	retval = ((process_comp_x4 / 8192.f) + (((float)_trim_data.dig_x1) * 8.f)) / 16.f;

	return retval;
}

float BMM150::compensate_y(int16_t mag_data_y, uint16_t data_rhall)
{
	float retval = 0;

	// Processing compensation equations
	//  not documented, but derived from https://github.com/BoschSensortec/BMM150-Sensor-API/blob/a20641f216057f0c54de115fe81b57368e119c01/bmm150.c#L1660-L1667 as of 2020-09-25
	float process_comp_y0 = ((float)_trim_data.dig_xyz1) * 16384.f / data_rhall;
	retval = process_comp_y0 - 16384.f;
	float process_comp_y1 = ((float)_trim_data.dig_xy2) * (retval * retval / 268435456.f);
	float process_comp_y2 = process_comp_y1 + retval * ((float)_trim_data.dig_xy1) / 16384.f;
	float process_comp_y3 = ((float)_trim_data.dig_y2) + 160.0f;
	float process_comp_y4 = mag_data_y * (((process_comp_y2) + 256.f) * process_comp_y3);
	retval = ((process_comp_y4 / 8192.f) + (((float)_trim_data.dig_y1) * 8.f)) / 16.f;

	return retval;
}

float BMM150::compensate_z(int16_t mag_data_z, uint16_t data_rhall)
{
	float retval = 0;

	// Processing compensation equations
	//  not documented, but derived from https://github.com/BoschSensortec/BMM150-Sensor-API/blob/a20641f216057f0c54de115fe81b57368e119c01/bmm150.c#L1696-L1703 as of 2020-09-25
	float process_comp_z0 = ((float)mag_data_z) - ((float)_trim_data.dig_z4);
	float process_comp_z1 = ((float)data_rhall) - ((float)_trim_data.dig_xyz1);
	float process_comp_z2 = (((float)_trim_data.dig_z3) * process_comp_z1);
	float process_comp_z3 = ((float)_trim_data.dig_z1) * ((float)data_rhall) / 32768.f;
	float process_comp_z4 = ((float)_trim_data.dig_z2) + process_comp_z3;
	float process_comp_z5 = (process_comp_z0 * 131072.f) - process_comp_z2;
	retval = (process_comp_z5 / ((process_comp_z4) * 4.f)) / 16.f;

	return retval;
}

static constexpr int16_t combine_xy_int13(const uint8_t msb, const uint8_t lsb)
{
	int16_t x = ((msb << 8) | lsb);
	return x / 8; // arithmetic shift by 3 (13 bit signed integer)
}

static constexpr int16_t combine_z_int15(const uint8_t msb, const uint8_t lsb)
{
	int16_t z = ((msb << 8) | lsb);
	return z / 2; // arithmetic shift by 1 (15 bit signed integer)
}

static constexpr uint16_t combine_rhall_uint14(const uint8_t msb, const uint8_t lsb)
{
	uint16_t rhall = ((msb << 8) | lsb);
	return (rhall >> 2) & 0x3FFF; // 14 bit unsigned integer
}

void BMM150::RunImpl()
{
	const hrt_abstime now = hrt_absolute_time();

	switch (_state) {
	case STATE::RESET:
		// POWER_CONTROL: soft reset
		RegisterWrite(Register::POWER_CONTROL, POWER_CONTROL_BIT::SoftReset | POWER_CONTROL_BIT::PowerControl);
		_reset_timestamp = now;
		_failure_count = 0;
		_state = STATE::WAIT_FOR_RESET;
		perf_count(_reset_perf);
		ScheduleDelayed(3_ms); // 3.0 ms start-up time from suspend to sleep
		break;

	case STATE::WAIT_FOR_RESET:

		// Soft reset always brings the device into sleep mode (power off -> suspend -> sleep)
		if ((RegisterRead(Register::CHIP_ID) == chip_identification_number)
		    && (RegisterRead(Register::POWER_CONTROL) == POWER_CONTROL_BIT::PowerControl)
		    && (RegisterRead(Register::OP_MODE) == OP_MODE_BIT::Opmode_Sleep)) {

			// if reset succeeded then start self test
			RegisterSetBits(Register::OP_MODE, OP_MODE_BIT::Self_Test);

			_state = STATE::SELF_TEST_CHECK;
			ScheduleDelayed(10_ms);

		} else {
			// RESET not complete
			if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
				PX4_DEBUG("Reset failed, retrying");
				_state = STATE::RESET;
				ScheduleDelayed(100_ms);

			} else {
				PX4_DEBUG("Reset not complete, check again in 10 ms");
				ScheduleDelayed(10_ms);
			}
		}

		break;

	case STATE::SELF_TEST_CHECK: {
			// After performing self test OpMode "Self test" bit is set to 0
			const bool opmode_self_test_cleared = ((RegisterRead(Register::OP_MODE) & OP_MODE_BIT::Self_Test) == 0);

			// When self-test is successful, the corresponding self-test result bits are set
			//  “X-Self-Test” register 0x42 bit0
			//  “Y-Self-Test” register 0x44 bit0
			//  “Z-Self-Test” register 0x46 bit0
			const bool x_success = RegisterRead(Register::DATAX_LSB) & Bit0;
			const bool y_success = RegisterRead(Register::DATAY_LSB) & Bit0;
			const bool z_success = RegisterRead(Register::DATAZ_LSB) & Bit0;

			if (opmode_self_test_cleared && (!x_success || !y_success || !z_success)) {
				PX4_DEBUG("self test failed, resetting");
				perf_count(_self_test_failed_perf);
				_state = STATE::RESET;
				ScheduleDelayed(1000_ms);

			} else {
				_state = STATE::READ_TRIM;
				ScheduleDelayed(1_ms);
			}
		}

		break;

	case STATE::READ_TRIM: {
			// Trim register value is read
			uint8_t cmd = static_cast<uint8_t>(Register::DIG_X1);
			uint8_t trim_x1y1[2] {};

			if (transfer(&cmd, 1, trim_x1y1, 2) == PX4_OK) {
				cmd = static_cast<uint8_t>(Register::DIG_Z4_LSB);
				uint8_t trim_xyz_data[4] {};

				if (transfer(&cmd, 1, trim_xyz_data, 4) == PX4_OK) {
					cmd = static_cast<uint8_t>(Register::DIG_Z2_LSB);
					uint8_t trim_xy1xy2[10] {};

					if (transfer(&cmd, 1, trim_xy1xy2, 10) == PX4_OK) {
						_trim_data.dig_x1 = (int8_t)trim_x1y1[0];
						_trim_data.dig_y1 = (int8_t)trim_x1y1[1];

						_trim_data.dig_x2 = (int8_t)trim_xyz_data[2];
						_trim_data.dig_y2 = (int8_t)trim_xyz_data[3];

						uint16_t temp_msb;
						temp_msb = ((uint16_t)trim_xy1xy2[3]) << 8;
						_trim_data.dig_z1 = (uint16_t)(temp_msb | trim_xy1xy2[2]);

						temp_msb = ((uint16_t)trim_xy1xy2[1]) << 8;
						_trim_data.dig_z2 = (int16_t)(temp_msb | trim_xy1xy2[0]);

						temp_msb = ((uint16_t)trim_xy1xy2[7]) << 8;
						_trim_data.dig_z3 = (int16_t)(temp_msb | trim_xy1xy2[6]);

						temp_msb = ((uint16_t)trim_xyz_data[1]) << 8;
						_trim_data.dig_z4 = (int16_t)(temp_msb | trim_xyz_data[0]);

						_trim_data.dig_xy1 = trim_xy1xy2[9];
						_trim_data.dig_xy2 = (int8_t)trim_xy1xy2[8];

						temp_msb = ((uint16_t)(trim_xy1xy2[5] & 0x7F)) << 8;
						_trim_data.dig_xyz1 = (uint16_t)(temp_msb | trim_xy1xy2[4]);

						if ((_trim_data.dig_xyz1 != 0) && (_trim_data.dig_z2 != 0) && (_trim_data.dig_z1 != 0)) {
							_state = STATE::CONFIGURE;
							ScheduleDelayed(1_ms);
							return;
						}
					}
				}
			}

			// reset if reading trim failed
			PX4_DEBUG("reading trim failed, resetting");
			perf_count(_bad_register_perf);
			_state = STATE::RESET;
			ScheduleDelayed(100_ms);
		}

		break;

	case STATE::CONFIGURE:
		if (Configure()) {
			// if configure succeeded then start reading every 50 ms (20 Hz)
			_state = STATE::READ;
			ScheduleOnInterval(50_ms, 50_ms);

		} else {
			// CONFIGURE not complete
			if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
				PX4_DEBUG("Configure failed, resetting");
				_state = STATE::RESET;

			} else {
				PX4_DEBUG("Configure failed, retrying");
			}

			ScheduleDelayed(100_ms);
		}

		break;

	case STATE::READ: {
			struct TransferBuffer {
				uint8_t DATAX_LSB;
				uint8_t DATAX_MSB;
				uint8_t DATAY_LSB;
				uint8_t DATAY_MSB;
				uint8_t DATAZ_LSB;
				uint8_t DATAZ_MSB;
				uint8_t RHALL_LSB;
				uint8_t RHALL_MSB;
				uint8_t STATUS;
			} buffer{};

			bool success = false;
			// 0x42 to 0x4A with a burst read.
			uint8_t cmd = static_cast<uint8_t>(Register::DATAX_LSB);

			if (transfer(&cmd, 1, (uint8_t *)&buffer, sizeof(buffer)) == PX4_OK) {

				int16_t x = combine_xy_int13(buffer.DATAX_MSB, buffer.DATAX_LSB);
				int16_t y = combine_xy_int13(buffer.DATAY_MSB, buffer.DATAY_LSB);
				int16_t z = combine_z_int15(buffer.DATAZ_MSB, buffer.DATAZ_LSB);
				uint16_t rhall = combine_rhall_uint14(buffer.RHALL_MSB, buffer.RHALL_LSB);

				const bool data_ready = buffer.RHALL_LSB & Bit0;

				if (data_ready && (rhall != 0)) {
					if ((buffer.STATUS & STATUS_BIT::Overflow) ||
					    (x == OVERFLOW_XYAXES) || (y == OVERFLOW_XYAXES) || (z == OVERFLOW_ZAXIS)) {
						// overflow ADC value, record error, but don't publish
						perf_count(_overflow_perf);

					} else {
						_px4_mag.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf));
						_px4_mag.update(now, compensate_x(x, rhall), compensate_y(y, rhall), compensate_z(z, rhall));

						success = true;

						if (_failure_count > 0) {
							_failure_count--;
						}
					}
				}

			} else {
				perf_count(_bad_transfer_perf);
			}

			if (!success) {
				_failure_count++;

				// full reset if things are failing consistently
				if (_failure_count > 10) {
					Reset();
					return;
				}
			}

			if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
				// check configuration registers periodically or immediately following any failure
				if (RegisterCheck(_register_cfg[_checked_register])) {
					_last_config_check_timestamp = now;
					_checked_register = (_checked_register + 1) % size_register_cfg;

				} else {
					// register check failed, force reset
					perf_count(_bad_register_perf);
					Reset();
				}
			}
		}

		break;
	}
}

bool BMM150::Configure()
{
	// first set and clear all configured register bits
	for (const auto &reg_cfg : _register_cfg) {
		RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
	}

	// now check that all are configured
	bool success = true;

	for (const auto &reg_cfg : _register_cfg) {
		if (!RegisterCheck(reg_cfg)) {
			success = false;
		}
	}

	// microTesla -> Gauss
	_px4_mag.set_scale(0.01f);

	return success;
}

bool BMM150::RegisterCheck(const register_config_t &reg_cfg)
{
	bool success = true;

	const uint8_t reg_value = RegisterRead(reg_cfg.reg);

	if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
		PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
		success = false;
	}

	if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
		PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
		success = false;
	}

	return success;
}

uint8_t BMM150::RegisterRead(Register reg)
{
	const uint8_t cmd = static_cast<uint8_t>(reg);
	uint8_t buffer{};
	int ret = transfer(&cmd, 1, &buffer, 1);

	if (ret != PX4_OK) {
		PX4_DEBUG("register read 0x%02hhX failed, ret = %d", cmd, ret);
		return -1;
	}

	return buffer;
}

void BMM150::RegisterWrite(Register reg, uint8_t value)
{
	uint8_t buffer[2] { (uint8_t)reg, value };
	int ret = transfer(buffer, sizeof(buffer), nullptr, 0);

	if (ret != PX4_OK) {
		PX4_DEBUG("register write 0x%02hhX failed, ret = %d", (uint8_t)reg, ret);
	}
}

void BMM150::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
	const uint8_t orig_val = RegisterRead(reg);
	uint8_t val = (orig_val & ~clearbits) | setbits;

	if (orig_val != val) {
		RegisterWrite(reg, val);
	}
}