ICM20649.cpp
17.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM20649.hpp"
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
ICM20649::ICM20649(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation, int bus_frequency,
spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio) :
SPI(DRV_IMU_DEVTYPE_ICM20649, MODULE_NAME, bus, device, spi_mode, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
_drdy_gpio(drdy_gpio),
_px4_accel(get_device_id(), rotation),
_px4_gyro(get_device_id(), rotation)
{
if (drdy_gpio != 0) {
_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME": DRDY missed");
}
ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
}
ICM20649::~ICM20649()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_missed_perf);
}
int ICM20649::init()
{
int ret = SPI::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("SPI::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool ICM20649::Reset()
{
_state = STATE::RESET;
DataReadyInterruptDisable();
ScheduleClear();
ScheduleNow();
return true;
}
void ICM20649::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void ICM20649::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_missed_perf);
}
int ICM20649::probe()
{
const uint8_t whoami = RegisterRead(Register::BANK_0::WHO_AM_I);
if (whoami != WHOAMI) {
DEVICE_DEBUG("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
return PX4_OK;
}
void ICM20649::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::RESET:
// PWR_MGMT_1: Device Reset
RegisterWrite(Register::BANK_0::PWR_MGMT_1, PWR_MGMT_1_BIT::DEVICE_RESET);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(100_ms);
break;
case STATE::WAIT_FOR_RESET:
// The reset value is 0x00 for all registers other than the registers below
if ((RegisterRead(Register::BANK_0::WHO_AM_I) == WHOAMI)
&& (RegisterRead(Register::BANK_0::PWR_MGMT_1) == 0x41)) {
// Wakeup and reset
RegisterWrite(Register::BANK_0::PWR_MGMT_1, PWR_MGMT_1_BIT::CLKSEL_0);
RegisterWrite(Register::BANK_0::USER_CTRL, USER_CTRL_BIT::I2C_IF_DIS | USER_CTRL_BIT::SRAM_RST);
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleDelayed(100_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(100_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
}
FIFOReset();
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_READ: {
if (_data_ready_interrupt_enabled) {
// scheduled from interrupt if _drdy_fifo_read_samples was set
if (_drdy_fifo_read_samples.fetch_and(0) != _fifo_gyro_samples) {
perf_count(_drdy_missed_perf);
}
// push backup schedule back
ScheduleDelayed(_fifo_empty_interval_us * 2);
}
// always check current FIFO count
bool success = false;
const uint16_t fifo_count = FIFOReadCount();
if (fifo_count >= FIFO::SIZE) {
FIFOReset();
perf_count(_fifo_overflow_perf);
} else if (fifo_count == 0) {
perf_count(_fifo_empty_perf);
} else {
// FIFO count (size in bytes) should be a multiple of the FIFO::DATA structure
const uint8_t samples = (fifo_count / sizeof(FIFO::DATA) / SAMPLES_PER_TRANSFER) *
SAMPLES_PER_TRANSFER; // round down to nearest
if (samples > FIFO_MAX_SAMPLES) {
// not technically an overflow, but more samples than we expected or can publish
FIFOReset();
perf_count(_fifo_overflow_perf);
} else if (samples >= 1) {
if (FIFORead(now, samples)) {
success = true;
if (_failure_count > 0) {
_failure_count--;
}
}
}
}
if (!success) {
_failure_count++;
// full reset if things are failing consistently
if (_failure_count > 10) {
Reset();
return;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_bank0_cfg[_checked_register_bank0])
&& RegisterCheck(_register_bank2_cfg[_checked_register_bank2])
) {
_last_config_check_timestamp = now;
_checked_register_bank0 = (_checked_register_bank0 + 1) % size_register_bank0_cfg;
_checked_register_bank2 = (_checked_register_bank2 + 1) % size_register_bank2_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
}
} else {
// periodically update temperature (~1 Hz)
if (hrt_elapsed_time(&_temperature_update_timestamp) >= 1_s) {
UpdateTemperature();
_temperature_update_timestamp = now;
}
}
}
break;
}
}
void ICM20649::ConfigureAccel()
{
const uint8_t ACCEL_FS_SEL = RegisterRead(Register::BANK_2::ACCEL_CONFIG) & (Bit2 | Bit1); // 2:1 ACCEL_FS_SEL[1:0]
switch (ACCEL_FS_SEL) {
case ACCEL_FS_SEL_4G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 8192.f);
_px4_accel.set_range(4.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_8G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 4096.f);
_px4_accel.set_range(8.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_16G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 2048.f);
_px4_accel.set_range(16.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_30G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 1024.f);
_px4_accel.set_range(30.f * CONSTANTS_ONE_G);
break;
}
}
void ICM20649::ConfigureGyro()
{
const uint8_t GYRO_FS_SEL = RegisterRead(Register::BANK_2::GYRO_CONFIG_1) & (Bit2 | Bit1); // 2:1 GYRO_FS_SEL[1:0]
float range_dps = 0.f;
switch (GYRO_FS_SEL) {
case GYRO_FS_SEL_500_DPS:
range_dps = 500.f;
break;
case GYRO_FS_SEL_1000_DPS:
range_dps = 1000.f;
break;
case GYRO_FS_SEL_2000_DPS:
range_dps = 2000.f;
break;
case GYRO_FS_SEL_4000_DPS:
range_dps = 4000.f;
break;
}
_px4_gyro.set_scale(math::radians(range_dps / 32768.f));
_px4_gyro.set_range(math::radians(range_dps));
}
void ICM20649::ConfigureSampleRate(int sample_rate)
{
// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
const float min_interval = FIFO_SAMPLE_DT * SAMPLES_PER_TRANSFER;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_gyro_samples = roundf(math::min((float)_fifo_empty_interval_us / (1e6f / GYRO_RATE), (float)FIFO_MAX_SAMPLES));
// recompute FIFO empty interval (us) with actual gyro sample limit
_fifo_empty_interval_us = _fifo_gyro_samples * (1e6f / GYRO_RATE);
}
void ICM20649::SelectRegisterBank(enum REG_BANK_SEL_BIT bank)
{
if (bank != _last_register_bank) {
// select BANK_0
uint8_t cmd_bank_sel[2] {};
cmd_bank_sel[0] = static_cast<uint8_t>(Register::BANK_0::REG_BANK_SEL);
cmd_bank_sel[1] = bank;
transfer(cmd_bank_sel, cmd_bank_sel, sizeof(cmd_bank_sel));
_last_register_bank = bank;
}
}
bool ICM20649::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_bank0_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
for (const auto ®_cfg : _register_bank2_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_bank0_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
for (const auto ®_cfg : _register_bank2_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
ConfigureAccel();
ConfigureGyro();
return success;
}
int ICM20649::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<ICM20649 *>(arg)->DataReady();
return 0;
}
void ICM20649::DataReady()
{
uint32_t expected = 0;
// at least the required number of samples in the FIFO
if (((_drdy_count.fetch_add(1) + 1) >= _fifo_gyro_samples)
&& _drdy_fifo_read_samples.compare_exchange(&expected, _fifo_gyro_samples)) {
_drdy_count.store(0);
ScheduleNow();
}
}
bool ICM20649::DataReadyInterruptConfigure()
{
// TODO: enable data ready interrupt
return false;
#if 0
if (_drdy_gpio == 0) {
return false;
}
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
#endif
}
bool ICM20649::DataReadyInterruptDisable()
{
// TODO: enable data ready interrupt
return false;
#if 0
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
#endif
}
template <typename T>
bool ICM20649::RegisterCheck(const T ®_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
template <typename T>
uint8_t ICM20649::RegisterRead(T reg)
{
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
SelectRegisterBank(reg);
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
template <typename T>
void ICM20649::RegisterWrite(T reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
SelectRegisterBank(reg);
transfer(cmd, cmd, sizeof(cmd));
}
template <typename T>
void ICM20649::RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
uint16_t ICM20649::FIFOReadCount()
{
// read FIFO count
uint8_t fifo_count_buf[3] {};
fifo_count_buf[0] = static_cast<uint8_t>(Register::BANK_0::FIFO_COUNTH) | DIR_READ;
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
if (transfer(fifo_count_buf, fifo_count_buf, sizeof(fifo_count_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return 0;
}
return combine(fifo_count_buf[1], fifo_count_buf[2]);
}
bool ICM20649::FIFORead(const hrt_abstime ×tamp_sample, uint8_t samples)
{
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 3, FIFO::SIZE);
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_count(_bad_transfer_perf);
return false;
}
const uint16_t fifo_count_bytes = combine(buffer.FIFO_COUNTH, buffer.FIFO_COUNTL);
if (fifo_count_bytes >= FIFO::SIZE) {
perf_count(_fifo_overflow_perf);
FIFOReset();
return false;
}
const uint8_t fifo_count_samples = fifo_count_bytes / sizeof(FIFO::DATA);
if (fifo_count_samples == 0) {
perf_count(_fifo_empty_perf);
return false;
}
const uint16_t valid_samples = math::min(samples, fifo_count_samples);
if (valid_samples > 0) {
ProcessGyro(timestamp_sample, buffer.f, valid_samples);
if (ProcessAccel(timestamp_sample, buffer.f, valid_samples)) {
return true;
}
}
return false;
}
void ICM20649::FIFOReset()
{
perf_count(_fifo_reset_perf);
// FIFO_RST: reset FIFO
RegisterSetBits(Register::BANK_0::FIFO_RST, FIFO_RST_BIT::FIFO_RESET);
RegisterClearBits(Register::BANK_0::FIFO_RST, FIFO_RST_BIT::FIFO_RESET);
// reset while FIFO is disabled
_drdy_count.store(0);
_drdy_fifo_read_samples.store(0);
}
static bool fifo_accel_equal(const FIFO::DATA &f0, const FIFO::DATA &f1)
{
return (memcmp(&f0.ACCEL_XOUT_H, &f1.ACCEL_XOUT_H, 6) == 0);
}
bool ICM20649::ProcessAccel(const hrt_abstime ×tamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
accel.dt = FIFO_SAMPLE_DT * SAMPLES_PER_TRANSFER;
bool bad_data = false;
// accel data is doubled in FIFO, but might be shifted
int accel_first_sample = 1;
if (samples >= 4) {
if (fifo_accel_equal(fifo[0], fifo[1]) && fifo_accel_equal(fifo[2], fifo[3])) {
// [A0, A1, A2, A3]
// A0==A1, A2==A3
accel_first_sample = 1;
} else if (fifo_accel_equal(fifo[1], fifo[2])) {
// [A0, A1, A2, A3]
// A0, A1==A2, A3
accel_first_sample = 0;
} else {
// no matching accel samples is an error
bad_data = true;
perf_count(_bad_transfer_perf);
}
}
for (int i = accel_first_sample; i < samples; i = i + SAMPLES_PER_TRANSFER) {
int16_t accel_x = combine(fifo[i].ACCEL_XOUT_H, fifo[i].ACCEL_XOUT_L);
int16_t accel_y = combine(fifo[i].ACCEL_YOUT_H, fifo[i].ACCEL_YOUT_L);
int16_t accel_z = combine(fifo[i].ACCEL_ZOUT_H, fifo[i].ACCEL_ZOUT_L);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[accel.samples] = accel_x;
accel.y[accel.samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel.samples++;
}
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (accel.samples > 0) {
_px4_accel.updateFIFO(accel);
}
return !bad_data;
}
void ICM20649::ProcessGyro(const hrt_abstime ×tamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = timestamp_sample;
gyro.samples = samples;
gyro.dt = FIFO_SAMPLE_DT;
for (int i = 0; i < samples; i++) {
const int16_t gyro_x = combine(fifo[i].GYRO_XOUT_H, fifo[i].GYRO_XOUT_L);
const int16_t gyro_y = combine(fifo[i].GYRO_YOUT_H, fifo[i].GYRO_YOUT_L);
const int16_t gyro_z = combine(fifo[i].GYRO_ZOUT_H, fifo[i].GYRO_ZOUT_L);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
gyro.x[i] = gyro_x;
gyro.y[i] = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
gyro.z[i] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
}
_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
_px4_gyro.updateFIFO(gyro);
}
void ICM20649::UpdateTemperature()
{
// read current temperature
uint8_t temperature_buf[3] {};
temperature_buf[0] = static_cast<uint8_t>(Register::BANK_0::TEMP_OUT_H) | DIR_READ;
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
if (transfer(temperature_buf, temperature_buf, sizeof(temperature_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return;
}
const int16_t TEMP_OUT = combine(temperature_buf[1], temperature_buf[2]);
const float TEMP_degC = (TEMP_OUT / TEMPERATURE_SENSITIVITY) + TEMPERATURE_OFFSET;
if (PX4_ISFINITE(TEMP_degC)) {
_px4_accel.set_temperature(TEMP_degC);
_px4_gyro.set_temperature(TEMP_degC);
}
}