DPS310.cpp
8.49 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "DPS310.hpp"
using namespace Infineon_DPS310;
namespace dps310
{
template<typename T>
static void getTwosComplement(T &raw, uint8_t length)
{
if (raw & ((T)1 << (length - 1))) {
raw -= (T)1 << length;
}
}
DPS310::DPS310(I2CSPIBusOption bus_option, int bus, device::Device *interface) :
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(interface->get_device_id()), bus_option, bus,
interface->get_device_address()),
_px4_barometer(interface->get_device_id()),
_interface(interface),
_sample_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": read")),
_comms_errors(perf_alloc(PC_COUNT, MODULE_NAME": comm errors"))
{
}
DPS310::~DPS310()
{
perf_free(_sample_perf);
perf_free(_comms_errors);
delete _interface;
}
int
DPS310::init()
{
if (RegisterRead(Register::ID) != Infineon_DPS310::REV_AND_PROD_ID) {
PX4_ERR("Product_ID mismatch");
return PX4_ERROR;
}
if (reset() != OK) {
PX4_DEBUG("reset failed");
return PX4_ERROR;
}
start();
return PX4_OK;
}
int
DPS310::reset()
{
// Soft Reset
RegisterSetBits(Register::RESET, RESET_BIT::SOFT_RST);
usleep(40000); // 40 milliseconds
const uint8_t mode_and_status = RegisterRead(Register::MEAS_CFG);
bool coefficients_ready = mode_and_status & MEAS_CFG_BIT::COEF_RDY;
bool sensor_ready = mode_and_status & MEAS_CFG_BIT::SENSOR_RDY;
if (!coefficients_ready) {
PX4_ERR("Coefficients are not available");
return PX4_ERROR;
}
if (!sensor_ready) {
PX4_ERR("Sensor initialization not complete");
return PX4_ERROR;
}
// 1. Read the pressure calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration Coefficient register.
// Note: The coefficients read from the coefficient register are 2's complement numbers.
uint8_t coef[18] {};
if (_interface->read((uint8_t)Register::COEF, coef, 18)) {
return PX4_ERROR;
}
// first element of coef[18] corresponds to register 0x10
// 0x11 c0 [3:0] + 0x10 c0 [11:4]
_calibration.c0 = ((uint32_t)coef[0] << 4) | (((uint32_t)coef[1] >> 4) & 0x0F);
getTwosComplement(_calibration.c0, 12);
// 0x11 c1 [11:8] + 0x12 c1 [7:0]
_calibration.c1 = (((uint32_t)coef[1] & 0x0F) << 8) | (uint32_t)coef[2];
getTwosComplement(_calibration.c1, 12);
// 0x13 c00 [19:12] + 0x14 c00 [11:4] + 0x15 c00 [3:0]
_calibration.c00 = ((uint32_t)coef[3] << 12) | ((uint32_t)coef[4] << 4) | (((uint32_t)coef[5] >> 4) & 0x0F);
getTwosComplement(_calibration.c00, 20);
// 0x15 c10 [19:16] + 0x16 c10 [15:8] + 0x17 c10 [7:0]
_calibration.c10 = (((uint32_t)coef[5] & 0x0F) << 16) | ((uint32_t)coef[6] << 8) | (uint32_t)coef[7];
getTwosComplement(_calibration.c10, 20);
// 0x18 c01 [15:8] + 0x19 c01 [7:0]
_calibration.c01 = ((uint32_t)coef[8] << 8) | (uint32_t)coef[9];
getTwosComplement(_calibration.c01, 16);
// 0x1A c11 [15:8] + 0x1B c11 [7:0]
_calibration.c11 = ((uint32_t)coef[10] << 8) | (uint32_t)coef[11];
getTwosComplement(_calibration.c11, 16);
// 0x1C c20 [15:8] + 0x1D c20 [7:0]
_calibration.c20 = ((uint32_t)coef[12] << 8) | (uint32_t)coef[13];
getTwosComplement(_calibration.c20, 16);
// 0x1E c21 [15:8] + 0x1F c21 [7:0]
_calibration.c21 = ((uint32_t)coef[14] << 8) | (uint32_t)coef[15];
getTwosComplement(_calibration.c21, 16);
// 0x20 c30 [15:8] + 0x21 c30 [7:0]
_calibration.c30 = ((uint32_t)coef[16] << 8) | (uint32_t)coef[17];
getTwosComplement(_calibration.c30, 16);
// PRS_CFG: pressure measurement rate (32 Hz) and oversampling (16 time standard)
RegisterSetBits(Register::PRS_CFG, PRS_CFG_BIT::PM_RATE_32HZ | PRS_CFG_BIT::PM_PRC_16);
// TMP_CFG: temperature measurement rate (32 Hz) and oversampling (16 times)
const uint8_t TMP_COEF_SRCE = RegisterRead(Register::COEF_SRCE) & COEF_SRCE_BIT::TMP_COEF_SRCE;
RegisterSetBits(Register::TMP_CFG, TMP_CFG_BIT::TMP_RATE_32HZ | TMP_CFG_BIT::TMP_PRC_16 | TMP_COEF_SRCE);
// CFG_REG: set pressure and temperature result bit-shift (required when the oversampling rate is >8 times)
RegisterSetBits(Register::CFG_REG, CFG_REG_BIT::T_SHIFT | CFG_REG_BIT::P_SHIFT);
// MEAS_CFG: Continous pressure and temperature measurement
RegisterSetBits(Register::MEAS_CFG, MEAS_CFG_BIT::MEAS_CTRL_CONT);
return PX4_OK;
}
void
DPS310::start()
{
// run at twice the sample rate to capture all new data
ScheduleOnInterval(1000000 / SAMPLE_RATE / 2);
}
void
DPS310::RunImpl()
{
perf_begin(_sample_perf);
// check if pressure ready
bool pressure_ready = RegisterRead(Register::MEAS_CFG) & MEAS_CFG_BIT::PRS_RDY;
if (!pressure_ready) {
perf_end(_sample_perf);
return;
}
// 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate. The scaling factors are listed in Table 9.
static constexpr float kT = 253952; // 16 times (Standard)
static constexpr float kP = 253952; // 16 times (Standard)
// 3. Read the pressure and temperature result from the registers
// Read PSR_B2, PSR_B1, PSR_B0, TMP_B2, TMP_B1, TMP_B0
uint8_t buf[6] {};
const hrt_abstime timestamp_sample = hrt_absolute_time();
if (_interface->read((uint8_t)Register::PSR_B2, buf, 6) != PX4_OK) {
perf_count(_comms_errors);
perf_end(_sample_perf);
return;
}
int32_t Praw = (buf[0] << 16) + (buf[1] << 8) + buf[2];
getTwosComplement(Praw, 24);
int32_t Traw = (buf[3] << 16) + (buf[4] << 8) + buf[5];
getTwosComplement(Traw, 24);
// 4. Calculate scaled measurement results.
const float Praw_sc = Praw / kP;
const float Traw_sc = Traw / kT;
// 5. Calculate compensated measurement results.
const auto &c00 = _calibration.c00;
const auto &c01 = _calibration.c01;
const auto &c10 = _calibration.c10;
const auto &c11 = _calibration.c11;
const auto &c20 = _calibration.c20;
const auto &c21 = _calibration.c21;
const auto &c30 = _calibration.c30;
const float Pcomp = c00 + Praw_sc * (c10 + Praw_sc * (c20 + Praw_sc * c30)) + Traw_sc * c01 + Traw_sc * Praw_sc *
(c11 + Praw_sc * c21);
const auto &c0 = _calibration.c0;
const auto &c1 = _calibration.c1;
const float Tcomp = c0 * 0.5f + c1 * Traw_sc;
_px4_barometer.set_error_count(perf_event_count(_comms_errors));
_px4_barometer.set_temperature(Tcomp);
_px4_barometer.update(timestamp_sample, Pcomp / 100.0f); // Pascals -> Millibar
perf_end(_sample_perf);
}
uint8_t
DPS310::RegisterRead(Register reg)
{
uint8_t buf{};
_interface->read((uint8_t)reg, &buf, 1);
return buf;
}
void
DPS310::RegisterWrite(Register reg, uint8_t value)
{
_interface->write((uint8_t)reg, &value, 1);
}
void
DPS310::RegisterSetBits(Register reg, uint8_t setbits)
{
uint8_t val = RegisterRead(reg);
if (!(val & setbits)) {
val |= setbits;
RegisterWrite(reg, val);
}
}
void
DPS310::RegisterClearBits(Register reg, uint8_t clearbits)
{
uint8_t val = RegisterRead(reg);
if (val & clearbits) {
val &= !clearbits;
RegisterWrite(reg, val);
}
}
void
DPS310::print_status()
{
I2CSPIDriverBase::print_status();
perf_print_counter(_sample_perf);
perf_print_counter(_comms_errors);
}
} // namespace dps310