mission_block.cpp 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/****************************************************************************
 *
 *   Copyright (c) 2014 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/
/**
 * @file mission_block.cpp
 *
 * Helper class to use mission items
 *
 * @author Julian Oes <julian@oes.ch>
 * @author Sander Smeets <sander@droneslab.com>
 * @author Andreas Antener <andreas@uaventure.com>
 */

#include "mission_block.h"
#include "navigator.h"
#include <iostream>
#include <math.h>
#include <float.h>

#include <lib/ecl/geo/geo.h>
#include <systemlib/mavlink_log.h>
#include <mathlib/mathlib.h>
#include <uORB/uORB.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/vehicle_command.h>
#include <uORB/topics/vtol_vehicle_status.h>

using matrix::wrap_pi;

MissionBlock::MissionBlock(Navigator *navigator) :
	NavigatorMode(navigator)
{
	_mission_item.lat = (double)NAN;
	_mission_item.lon = (double)NAN;
	_mission_item.yaw = NAN;
	_mission_item.loiter_radius = _navigator->get_loiter_radius();
	_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
	_mission_item.time_inside = 0.0f;
	_mission_item.autocontinue = true;
	_mission_item.origin = ORIGIN_ONBOARD;

}

bool
MissionBlock::is_mission_item_reached()
{
	/* handle non-navigation or indefinite waypoints */

	switch (_mission_item.nav_cmd) {
	case NAV_CMD_DO_SET_SERVO:
		return true;

	case NAV_CMD_LAND: /* fall through */
	case NAV_CMD_VTOL_LAND:
		return _navigator->get_land_detected()->landed;

	case NAV_CMD_IDLE: /* fall through */
	case NAV_CMD_LOITER_UNLIMITED:
		return false;

	case NAV_CMD_DO_LAND_START:
	case NAV_CMD_DO_TRIGGER_CONTROL:
	case NAV_CMD_DO_DIGICAM_CONTROL:
	case NAV_CMD_IMAGE_START_CAPTURE:
	case NAV_CMD_IMAGE_STOP_CAPTURE:
	case NAV_CMD_VIDEO_START_CAPTURE:
	case NAV_CMD_VIDEO_STOP_CAPTURE:
	case NAV_CMD_DO_CONTROL_VIDEO:
	case NAV_CMD_DO_MOUNT_CONFIGURE:
	case NAV_CMD_DO_MOUNT_CONTROL:
	case NAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW:
	case NAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE:
	case NAV_CMD_DO_SET_ROI:
	case NAV_CMD_DO_SET_ROI_LOCATION:
	case NAV_CMD_DO_SET_ROI_WPNEXT_OFFSET:
	case NAV_CMD_DO_SET_ROI_NONE:
	case NAV_CMD_DO_SET_CAM_TRIGG_DIST:
	case NAV_CMD_OBLIQUE_SURVEY:
	case NAV_CMD_DO_SET_CAM_TRIGG_INTERVAL:
	case NAV_CMD_SET_CAMERA_MODE:
	case NAV_CMD_SET_CAMERA_ZOOM:
	case NAV_CMD_SET_CAMERA_FOCUS:
		return true;

	case NAV_CMD_DO_VTOL_TRANSITION:

		/*
		 * We wait half a second to give the transition command time to propagate.
		 * Then monitor the transition status for completion.
		 */
		// TODO: check desired transition state achieved and drop _action_start
		if (hrt_absolute_time() - _action_start > 500000 &&
		    !_navigator->get_vstatus()->in_transition_mode) {

			_action_start = 0;
			return true;

		} else {
			return false;
		}

	case NAV_CMD_DO_CHANGE_SPEED:
	case NAV_CMD_DO_SET_HOME:
		return true;

	default:
		/* do nothing, this is a 3D waypoint */
		break;
	}

	hrt_abstime now = hrt_absolute_time();

	if (!_navigator->get_land_detected()->landed && !_waypoint_position_reached) {

		float dist = -1.0f;
		float dist_xy = -1.0f;
		float dist_z = -1.0f;

		const float mission_item_altitude_amsl = get_absolute_altitude_for_item(_mission_item);

		dist = get_distance_to_point_global_wgs84(_mission_item.lat, _mission_item.lon, mission_item_altitude_amsl,
				_navigator->get_global_position()->lat,
				_navigator->get_global_position()->lon,
				_navigator->get_global_position()->alt,
				&dist_xy, &dist_z);

		if ((_mission_item.nav_cmd == NAV_CMD_TAKEOFF || _mission_item.nav_cmd == NAV_CMD_VTOL_TAKEOFF)
		    && _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {

			/* We want to avoid the edge case where the acceptance radius is bigger or equal than
			 * the altitude of the takeoff waypoint above home. Otherwise, we do not really follow
			 * take-off procedures like leaving the landing gear down. */

			float takeoff_alt = _mission_item.altitude_is_relative ?
					    _mission_item.altitude :
					    (_mission_item.altitude - _navigator->get_home_position()->alt);

			float altitude_acceptance_radius = _navigator->get_altitude_acceptance_radius();

			/* It should be safe to just use half of the takoeff_alt as an acceptance radius. */
			if (takeoff_alt > 0 && takeoff_alt < altitude_acceptance_radius) {
				altitude_acceptance_radius = takeoff_alt / 2.0f;
			}

			/* require only altitude for takeoff for multicopter */
			if (_navigator->get_global_position()->alt >
			    mission_item_altitude_amsl - altitude_acceptance_radius) {
				_waypoint_position_reached = true;
			}

		} else if (_mission_item.nav_cmd == NAV_CMD_TAKEOFF
			   && _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROVER) {
			/* for takeoff mission items use the parameter for the takeoff acceptance radius */
			if (dist_xy >= 0.0f && dist_xy <= _navigator->get_acceptance_radius()) {
				_waypoint_position_reached = true;
			}

		} else if (_mission_item.nav_cmd == NAV_CMD_TAKEOFF) {
			/* for takeoff mission items use the parameter for the takeoff acceptance radius */
			if (dist >= 0.0f && dist <= _navigator->get_acceptance_radius()
			    && dist_z <= _navigator->get_altitude_acceptance_radius()) {
				_waypoint_position_reached = true;
			}

		} else if (_navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING &&
			   (_mission_item.nav_cmd == NAV_CMD_LOITER_UNLIMITED ||
			    _mission_item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT)) {

			/* Loiter mission item on a non rotary wing: the aircraft is going to circle the
			 * coordinates with a radius equal to the loiter_radius field. It is not flying
			 * through the waypoint center.
			 * Therefore the item is marked as reached once the system reaches the loiter
			 * radius + L1 distance. Time inside and turn count is handled elsewhere.
			 */

			// check if within loiter radius around wp, if yes then set altitude sp to mission item
			if (dist >= 0.0f && dist_xy <= (_navigator->get_acceptance_radius() + fabsf(_mission_item.loiter_radius))
			    && dist_z <= _navigator->get_altitude_acceptance_radius()) {

				_waypoint_position_reached = true;
			}

		} else if (_mission_item.nav_cmd == NAV_CMD_LOITER_TO_ALT) {
			// NAV_CMD_LOITER_TO_ALT only uses mission item altitude once it's in the loiter.
			// First check if the altitude setpoint is the mission setpoint (that means that the loiter is not yet reached)
			struct position_setpoint_s *curr_sp = &_navigator->get_position_setpoint_triplet()->current;

			if (fabsf(curr_sp->alt - mission_item_altitude_amsl) >= FLT_EPSILON) {
				dist_xy = -1.0f;
				dist_z = -1.0f;

				dist = get_distance_to_point_global_wgs84(_mission_item.lat, _mission_item.lon, curr_sp->alt,
						_navigator->get_global_position()->lat,
						_navigator->get_global_position()->lon,
						_navigator->get_global_position()->alt,
						&dist_xy, &dist_z);

				// check if within loiter radius around wp, if yes then set altitude sp to mission item
				if (dist >= 0.0f && dist_xy <= (_navigator->get_acceptance_radius() + fabsf(_mission_item.loiter_radius))
				    && dist_z <= _navigator->get_default_altitude_acceptance_radius()) {

					curr_sp->alt = mission_item_altitude_amsl;
					curr_sp->type = position_setpoint_s::SETPOINT_TYPE_LOITER;
					_navigator->set_position_setpoint_triplet_updated();
				}

			} else if (dist >= 0.f && dist_xy <= (_navigator->get_acceptance_radius() + fabsf(_mission_item.loiter_radius))
				   && dist_z <= _navigator->get_altitude_acceptance_radius()) {
				// loitering, check if new altitude is reached, while still also having check on position

				_waypoint_position_reached = true;
			}

		} else if (_mission_item.nav_cmd == NAV_CMD_CONDITION_GATE) {

			struct position_setpoint_s *curr_sp = &_navigator->get_position_setpoint_triplet()->current;

			// if the setpoint is valid we are checking if we reached the gate
			// in the case of an invalid setpoint we are defaulting to
			// assuming that we have already reached the gate to not block
			// the further execution of the mission.
			if (curr_sp->valid) {

				// location of gate (mission item)
				struct map_projection_reference_s ref_pos;
				map_projection_init(&ref_pos, _mission_item.lat, _mission_item.lon);

				// current setpoint
				matrix::Vector2f gate_to_curr_sp;
				map_projection_project(&ref_pos, curr_sp->lat, curr_sp->lon, &gate_to_curr_sp(0), &gate_to_curr_sp(1));

				// system position
				matrix::Vector2f vehicle_pos;
				map_projection_project(&ref_pos, _navigator->get_global_position()->lat, _navigator->get_global_position()->lon,
						       &vehicle_pos(0), &vehicle_pos(1));
				const float dot_product = vehicle_pos.dot(gate_to_curr_sp.normalized());

				// if the dot product (projected vector) is positive, then
				// the current position is between the gate position and the
				// next waypoint
				if (dot_product >= 0) {
					_waypoint_position_reached = true;
					_waypoint_yaw_reached = true;
					_time_wp_reached = now;
				}
			}

		} else if (_mission_item.nav_cmd == NAV_CMD_DELAY) {
			_waypoint_position_reached = true;
			_waypoint_yaw_reached = true;
			_time_wp_reached = now;

		} else {
			/*normal mission items */

			float mission_acceptance_radius = _navigator->get_acceptance_radius();

			/* for vtol back transition calculate acceptance radius based on time and ground speed */
			if (_mission_item.vtol_back_transition
			    && _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING) {

				float velocity = sqrtf(_navigator->get_local_position()->vx * _navigator->get_local_position()->vx +
						       _navigator->get_local_position()->vy * _navigator->get_local_position()->vy);

				const float back_trans_dec = _navigator->get_vtol_back_trans_deceleration();
				const float reverse_delay = _navigator->get_vtol_reverse_delay();

				if (back_trans_dec > FLT_EPSILON && velocity > FLT_EPSILON) {
					mission_acceptance_radius = ((velocity / back_trans_dec / 2) * velocity) + reverse_delay * velocity;

				}

			}

			if (dist_xy >= 0.0f && dist_xy <= mission_acceptance_radius
			    && dist_z <= _navigator->get_altitude_acceptance_radius()) {
				_waypoint_position_reached = true;
			}
		}

		if (_waypoint_position_reached) {
			// reached just now
			_time_wp_reached = now;
		}

		// consider yaw reached for non-rotary wing vehicles (such as fixed-wing)
		if (_navigator->get_vstatus()->vehicle_type != vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
			_waypoint_yaw_reached = true;
		}
	}

	/* Check if the requested yaw setpoint is reached (only for rotary wing flight). */

	if (_waypoint_position_reached && !_waypoint_yaw_reached) {

		if (_navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
		    && PX4_ISFINITE(_navigator->get_yaw_acceptance(_mission_item.yaw))) {

			const float yaw_err = wrap_pi(_mission_item.yaw - _navigator->get_local_position()->heading);

			/* accept yaw if reached or if timeout is set in which case we ignore not forced headings */
			if (fabsf(yaw_err) < _navigator->get_yaw_threshold()
			    || (_navigator->get_yaw_timeout() >= FLT_EPSILON && !_mission_item.force_heading)) {

				_waypoint_yaw_reached = true;
			}

			/* if heading needs to be reached, the timeout is enabled and we don't make it, abort mission */
			if (!_waypoint_yaw_reached && _mission_item.force_heading &&
			    (_navigator->get_yaw_timeout() >= FLT_EPSILON) &&
			    (now - _time_wp_reached >= (hrt_abstime)_navigator->get_yaw_timeout() * 1e6f)) {

				_navigator->set_mission_failure("unable to reach heading within timeout");
			}

		} else {
			_waypoint_yaw_reached = true;
		}
	}

	/* Once the waypoint and yaw setpoint have been reached we can start the loiter time countdown */
	if (_waypoint_position_reached && _waypoint_yaw_reached) {

		bool time_inside_reached = false;

		/* check if the MAV was long enough inside the waypoint orbit */
		if ((get_time_inside(_mission_item) < FLT_EPSILON) ||
		    (now - _time_wp_reached >= (hrt_abstime)(get_time_inside(_mission_item) * 1e6f))) {
			time_inside_reached = true;
		}

		// check if heading for exit is reached (only applies for fixed-wing flight)
		bool exit_heading_reached = false;

		if (time_inside_reached) {

			struct position_setpoint_s *curr_sp_new = &_navigator->get_position_setpoint_triplet()->current;
			const position_setpoint_s &next_sp = _navigator->get_position_setpoint_triplet()->next;

			/* enforce exit heading if in FW, the next wp is valid, the vehicle is currently loitering and either having force_heading set,
			   or if loitering to achieve altitdue at a NAV_CMD_WAYPOINT */
			const bool enforce_exit_heading = _navigator->get_vstatus()->vehicle_type != vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
							  &&
							  next_sp.valid &&
							  curr_sp_new->type == position_setpoint_s::SETPOINT_TYPE_LOITER &&
							  (_mission_item.force_heading || _mission_item.nav_cmd == NAV_CMD_WAYPOINT);

			if (enforce_exit_heading) {


				const float dist_current_next = get_distance_to_next_waypoint(curr_sp_new->lat, curr_sp_new->lon, next_sp.lat,
								next_sp.lon);

				float yaw_err = 0.0f;

				if (dist_current_next >  1.2f * _navigator->get_loiter_radius()) {
					// set required yaw from bearing to the next mission item
					_mission_item.yaw = get_bearing_to_next_waypoint(_navigator->get_global_position()->lat,
							    _navigator->get_global_position()->lon,
							    next_sp.lat, next_sp.lon);
					const float cog = atan2f(_navigator->get_local_position()->vy, _navigator->get_local_position()->vx);
					yaw_err = wrap_pi(_mission_item.yaw - cog);



				}


				if (fabsf(yaw_err) < _navigator->get_yaw_threshold()) {
					exit_heading_reached = true;
				}

			} else {
				exit_heading_reached = true;
			}
		}

		// set exit flight course to next waypoint
		if (exit_heading_reached) {
			position_setpoint_s &curr_sp = _navigator->get_position_setpoint_triplet()->current;
			const position_setpoint_s &next_sp = _navigator->get_position_setpoint_triplet()->next;

			const float range = get_distance_to_next_waypoint(curr_sp.lat, curr_sp.lon, next_sp.lat, next_sp.lon);

			// exit xtrack location
			// reset lat/lon of loiter waypoint so vehicle follows a tangent
			if (_mission_item.loiter_exit_xtrack && next_sp.valid && PX4_ISFINITE(range) &&
			    (_mission_item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT ||
			     _mission_item.nav_cmd == NAV_CMD_LOITER_TO_ALT)) {

				float bearing = get_bearing_to_next_waypoint(curr_sp.lat, curr_sp.lon, next_sp.lat, next_sp.lon);
				// We should not use asinf outside of [-1..1].
				const float ratio = math::constrain(_mission_item.loiter_radius / range, -1.0f, 1.0f);
				float inner_angle = M_PI_2_F - asinf(ratio);

				// Compute "ideal" tangent origin
				if (curr_sp.loiter_direction > 0) {
					bearing -= inner_angle;

				} else {
					bearing += inner_angle;
				}

				// Replace current setpoint lat/lon with tangent coordinate
				waypoint_from_heading_and_distance(curr_sp.lat, curr_sp.lon,
								   bearing, fabsf(curr_sp.loiter_radius),
								   &curr_sp.lat, &curr_sp.lon);
			}

			return true; // mission item is reached
		}
	}

	return false;
}

void
MissionBlock::reset_mission_item_reached()
{
	_waypoint_position_reached = false;
	_waypoint_yaw_reached = false;
	_time_wp_reached = 0;
}

void
MissionBlock::issue_command(const mission_item_s &item)
{
	if (item_contains_position(item)
	    || item_contains_gate(item)
	    || item_contains_marker(item)) {
		return;
	}

	if (item.nav_cmd == NAV_CMD_DO_SET_SERVO) {
		PX4_INFO("DO_SET_SERVO command");

		// XXX: we should issue a vehicle command and handle this somewhere else
		actuator_controls_s actuators = {};
		actuators.timestamp = hrt_absolute_time();

		// params[0] actuator number to be set 0..5 (corresponds to AUX outputs 1..6)
		// params[1] new value for selected actuator in ms 900...2000
		actuators.control[(int)item.params[0]] = 1.0f / 2000 * -item.params[1];

		_actuator_pub.publish(actuators);

	} else {
		_action_start = hrt_absolute_time();

		// This is to support legacy DO_MOUNT_CONTROL as part of a mission.
		if (item.nav_cmd == NAV_CMD_DO_MOUNT_CONTROL) {
			_navigator->acquire_gimbal_control();
		}

		// we're expecting a mission command item here so assign the "raw" inputs to the command
		// (MAV_FRAME_MISSION mission item)
		vehicle_command_s vcmd = {};
		vcmd.command = item.nav_cmd;
		vcmd.param1 = item.params[0];
		vcmd.param2 = item.params[1];
		vcmd.param3 = item.params[2];
		vcmd.param4 = item.params[3];

		if (item.nav_cmd == NAV_CMD_DO_SET_ROI_LOCATION && item.altitude_is_relative) {
			vcmd.param5 = item.lat;
			vcmd.param6 = item.lon;
			vcmd.param7 = item.altitude + _navigator->get_home_position()->alt;

		} else {
			vcmd.param5 = (double)item.params[4];
			vcmd.param6 = (double)item.params[5];
			vcmd.param7 = item.params[6];
		}

		_navigator->publish_vehicle_cmd(&vcmd);
	}
}

float
MissionBlock::get_time_inside(const mission_item_s &item) const
{
	if ((item.nav_cmd == NAV_CMD_WAYPOINT
	     && _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) ||
	    item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT ||
	    item.nav_cmd == NAV_CMD_DELAY) {

		// a negative time inside would be invalid
		return math::max(item.time_inside, 0.0f);
	}

	return 0.0f;
}

bool
MissionBlock::item_contains_position(const mission_item_s &item)
{
	return item.nav_cmd == NAV_CMD_WAYPOINT ||
	       item.nav_cmd == NAV_CMD_LOITER_UNLIMITED ||
	       item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT ||
	       item.nav_cmd == NAV_CMD_LAND ||
	       item.nav_cmd == NAV_CMD_TAKEOFF ||
	       item.nav_cmd == NAV_CMD_LOITER_TO_ALT ||
	       item.nav_cmd == NAV_CMD_VTOL_TAKEOFF ||
	       item.nav_cmd == NAV_CMD_VTOL_LAND ||
	       item.nav_cmd == NAV_CMD_DO_FOLLOW_REPOSITION;
}

bool
MissionBlock::item_contains_gate(const mission_item_s &item)
{
	return item.nav_cmd == NAV_CMD_CONDITION_GATE;
}

bool
MissionBlock::item_contains_marker(const mission_item_s &item)
{
	return item.nav_cmd == NAV_CMD_DO_LAND_START;
}

bool
MissionBlock::mission_item_to_position_setpoint(const mission_item_s &item, position_setpoint_s *sp)
{
	/* don't change the setpoint for non-position items */
	if (!item_contains_position(item)) {
		return false;
	}

	sp->lat = item.lat;
	sp->lon = item.lon;
	sp->alt = get_absolute_altitude_for_item(item);
	sp->yaw = item.yaw;
	sp->yaw_valid = PX4_ISFINITE(item.yaw);
	sp->loiter_radius = (fabsf(item.loiter_radius) > NAV_EPSILON_POSITION) ? fabsf(item.loiter_radius) :
			    _navigator->get_loiter_radius();
	sp->loiter_direction = (item.loiter_radius > 0) ? 1 : -1;

	if (item.acceptance_radius > 0.0f && PX4_ISFINITE(item.acceptance_radius)) {
		// if the mission item has a specified acceptance radius, overwrite the default one from parameters
		sp->acceptance_radius = item.acceptance_radius;

	} else {
		sp->acceptance_radius = _navigator->get_default_acceptance_radius();
	}

	sp->cruising_speed = _navigator->get_cruising_speed();
	sp->cruising_throttle = _navigator->get_cruising_throttle();

	switch (item.nav_cmd) {
	case NAV_CMD_IDLE:
		sp->type = position_setpoint_s::SETPOINT_TYPE_IDLE;
		break;

	case NAV_CMD_TAKEOFF:

		// if already flying (armed and !landed) treat TAKEOFF like regular POSITION
		if ((_navigator->get_vstatus()->arming_state == vehicle_status_s::ARMING_STATE_ARMED)
		    && !_navigator->get_land_detected()->landed && !_navigator->get_land_detected()->maybe_landed) {

			sp->type = position_setpoint_s::SETPOINT_TYPE_POSITION;

		} else {
			sp->type = position_setpoint_s::SETPOINT_TYPE_TAKEOFF;
		}

		break;

	case NAV_CMD_VTOL_TAKEOFF:
		sp->type = position_setpoint_s::SETPOINT_TYPE_TAKEOFF;
		break;

	case NAV_CMD_LAND:
	case NAV_CMD_VTOL_LAND:
		sp->type = position_setpoint_s::SETPOINT_TYPE_LAND;
		break;

	case NAV_CMD_LOITER_TO_ALT:

		// initially use current altitude, and switch to mission item altitude once in loiter position
		if (_navigator->get_loiter_min_alt() > 0.f) { // ignore _param_loiter_min_alt if smaller than 0
			sp->alt = math::max(_navigator->get_global_position()->alt,
					    _navigator->get_home_position()->alt + _navigator->get_loiter_min_alt());

		} else {
			sp->alt = _navigator->get_global_position()->alt;
		}

	// FALLTHROUGH
	case NAV_CMD_LOITER_TIME_LIMIT:
	case NAV_CMD_LOITER_UNLIMITED:

		sp->type = position_setpoint_s::SETPOINT_TYPE_LOITER;
		break;

	default:
		sp->type = position_setpoint_s::SETPOINT_TYPE_POSITION;
		break;
	}

	sp->valid = true;
	sp->timestamp = hrt_absolute_time();

	return sp->valid;
}

void
MissionBlock::set_loiter_item(struct mission_item_s *item, float min_clearance)
{
	if (_navigator->get_land_detected()->landed) {
		/* landed, don't takeoff, but switch to IDLE mode */
		item->nav_cmd = NAV_CMD_IDLE;

	} else {
		item->nav_cmd = NAV_CMD_LOITER_UNLIMITED;

		struct position_setpoint_triplet_s *pos_sp_triplet = _navigator->get_position_setpoint_triplet();

		if (_navigator->get_can_loiter_at_sp() && pos_sp_triplet->current.valid) {
			/* use current position setpoint */
			item->lat = pos_sp_triplet->current.lat;
			item->lon = pos_sp_triplet->current.lon;
			item->altitude = pos_sp_triplet->current.alt;

		} else {
			/* use current position and use return altitude as clearance */
			item->lat = _navigator->get_global_position()->lat;
			item->lon = _navigator->get_global_position()->lon;
			item->altitude = _navigator->get_global_position()->alt;

			if (min_clearance > 0.0f && item->altitude < _navigator->get_home_position()->alt + min_clearance) {
				item->altitude = _navigator->get_home_position()->alt + min_clearance;
			}
		}

		item->altitude_is_relative = false;
		item->yaw = NAN;
		item->loiter_radius = _navigator->get_loiter_radius();
		item->acceptance_radius = _navigator->get_acceptance_radius();
		item->time_inside = 0.0f;
		item->autocontinue = false;
		item->origin = ORIGIN_ONBOARD;
	}
}

void
MissionBlock::set_takeoff_item(struct mission_item_s *item, float abs_altitude)
{
	item->nav_cmd = NAV_CMD_TAKEOFF;

	/* use current position */
	item->lat = _navigator->get_global_position()->lat;
	item->lon = _navigator->get_global_position()->lon;
	item->yaw = _navigator->get_local_position()->heading;

	item->altitude = abs_altitude;
	item->altitude_is_relative = false;

	item->loiter_radius = _navigator->get_loiter_radius();
	item->autocontinue = false;
	item->origin = ORIGIN_ONBOARD;
}

void
MissionBlock::set_land_item(struct mission_item_s *item, bool at_current_location)
{
	/* VTOL transition to RW before landing */
	if (_navigator->force_vtol()) {

		vehicle_command_s vcmd = {};
		vcmd.command = NAV_CMD_DO_VTOL_TRANSITION;
		vcmd.param1 = vtol_vehicle_status_s::VEHICLE_VTOL_STATE_MC;
		_navigator->publish_vehicle_cmd(&vcmd);
	}

	/* set the land item */
	item->nav_cmd = NAV_CMD_LAND;

	/* use current position */
	if (at_current_location) {
		item->lat = (double)NAN; //descend at current position
		item->lon = (double)NAN; //descend at current position
		item->yaw = _navigator->get_local_position()->heading;

	} else {
		/* use home position */
		item->lat = _navigator->get_home_position()->lat;
		item->lon = _navigator->get_home_position()->lon;
		item->yaw = _navigator->get_home_position()->yaw;
	}

	item->altitude = 0;
	item->altitude_is_relative = false;
	item->loiter_radius = _navigator->get_loiter_radius();
	item->acceptance_radius = _navigator->get_acceptance_radius();
	item->time_inside = 0.0f;
	item->autocontinue = true;
	item->origin = ORIGIN_ONBOARD;
}

void
MissionBlock::set_idle_item(struct mission_item_s *item)
{
	item->nav_cmd = NAV_CMD_IDLE;
	item->lat = _navigator->get_home_position()->lat;
	item->lon = _navigator->get_home_position()->lon;
	item->altitude_is_relative = false;
	item->altitude = _navigator->get_home_position()->alt;
	item->yaw = NAN;
	item->loiter_radius = _navigator->get_loiter_radius();
	item->acceptance_radius = _navigator->get_acceptance_radius();
	item->time_inside = 0.0f;
	item->autocontinue = true;
	item->origin = ORIGIN_ONBOARD;
}

void
MissionBlock::set_vtol_transition_item(struct mission_item_s *item, const uint8_t new_mode)
{
	item->nav_cmd = NAV_CMD_DO_VTOL_TRANSITION;
	item->params[0] = (float) new_mode;
	item->yaw = _navigator->get_local_position()->heading;
	item->autocontinue = true;
}

void
MissionBlock::mission_apply_limitation(mission_item_s &item)
{
	/*
	 * Limit altitude
	 */

	/* do nothing if altitude max is negative */
	if (_navigator->get_land_detected()->alt_max > 0.0f) {

		/* absolute altitude */
		float altitude_abs = item.altitude_is_relative
				     ? item.altitude + _navigator->get_home_position()->alt
				     : item.altitude;

		/* limit altitude to maximum allowed altitude */
		if ((_navigator->get_land_detected()->alt_max + _navigator->get_home_position()->alt) < altitude_abs) {
			item.altitude = item.altitude_is_relative ?
					_navigator->get_land_detected()->alt_max :
					_navigator->get_land_detected()->alt_max + _navigator->get_home_position()->alt;

		}
	}

	/*
	 * Add other limitations here
	 */
}

float
MissionBlock::get_absolute_altitude_for_item(const mission_item_s &mission_item) const
{
	if (mission_item.altitude_is_relative) {
		return mission_item.altitude + _navigator->get_home_position()->alt;

	} else {
		return mission_item.altitude;
	}
}